Skip to main content
Log in

Investigation on Volumetric and Viscometric Properties of Aqueous Solutions of L-Aspartic Acid and L-Glutamic Acid in Presence of Sodium Acetate

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This investigation is made to predict and assess the interactions of two nonessential amino acids (L-aspartic acid and L-glutamic acid) with a food additive, sodium acetate in aqueous medium. Volumetric and viscometric methods are chosen to determine various physicochemical and thermodynamic parameters important for understanding the interactional behavior of the amino acids with sodium acetate and the effect of these interactions on 3D network structure of water. Analysis of parameters like apparent molar volume, limiting apparent molar volume (\(V_{\phi }^{0}\)), limiting apparent molar expansibility (\(E_{\phi }^{0}\)) and viscosity coefficients (\({{B}_{{{\text{J}}}}}\) and \({{A}_{{\text{F}}}}\)) indicates towards \(({{V}_{\phi }})\) strong ion-solvent interactions in the experimental solutions. Variations of \(E_{\phi }^{0}\) and \({{B}_{{{\text{J}}}}}\) with temperature substantiate the kosmotropic character of the amino acids in presence of SA. Evolution of high energy transition state in order to initiate viscous flow of solutions is evidenced by the positive activation enthalpy and free energy of activation of viscous flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Gaba, A. Pal, D. Sharma, H. Kumar, and A. Kumar, J. Mol. Liq. 279, 711 (2019). https://doi.org/10.1016/j.molliq.2019.01.094

    Article  CAS  Google Scholar 

  2. Z. Yan, J. Wang, W. Kong, and J. Lu, Fluid Phase Equilib. 215, 143 (2004). https://doi.org/10.1016/j.fluid.2003.07.001

    Article  CAS  Google Scholar 

  3. H. Kumar, A. Katal, and P. K. Sharma, J. Chem. Eng. Data 65 (1473), 1487 (2020). https://doi.org/10.1021/acs.jced.9b00902

    Article  CAS  Google Scholar 

  4. R. Gaba, A. Pal, H. Kumar, and D. Sharma, Navjot, J. Mol. Liq. 242, 739 (2017). https://doi.org/10.1016/j.molliq.2017.07.058

    Article  CAS  Google Scholar 

  5. H. Kumar, R. Sharma, V. Kumar, and N. Al Masoud, J. Chem. Thermodyn. 158, 106452 (2021). https://doi.org/10.1016/j.jct.2021.106452

  6. S. Sharma, S. Sharma, J. Singh, M. Singh, A. K. Sharma, and M. Sharma, J. Chem. Thermodyn. 167, 106696 (2022). https://doi.org/10.1016/j.jct.2021.106696

  7. M. A. Jamal, T. A. Sajid, M. Saeed, B. Naseem, and M. Muneer, J. Mol. Liq. 360, 119510 (2022). https://doi.org/10.1016/j.molliq.2022.119510

  8. A. Hussain and A. M. Khan, J. Mol. Liq. 365, 120172 (2022). https://doi.org/10.1016/j.molliq.2022.120172

  9. A.Hussain, A. D. Shuaibu, A. J. Shaikh, and A. M. Khan, J. Mol. Liq. 347, 118003 (2022). https://doi.org/10.1016/j.molliq.2021.118003

  10. K. Dhal, S. Singh, and M. Talukdar, Mater. Today: Proc. 67, 1218 (2022). https://doi.org/10.1016/j.matpr.2022.08.290

    Article  CAS  Google Scholar 

  11. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 368, 120761 (2022). https://doi.org/10.1016/j.molliq.2022.120761

  12. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 361, 119578 (2022). https://doi.org/10.1016/j.molliq.2022.119578

  13. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 352, 118659 (2022). https://doi.org/10.1016/j.molliq.2022.118659

  14. U. N. Dash, S. Mishra, and B. Samantray, Egyp. J. Chem. 53 (163), 176 (2010). https://doi.org/10.21608/EJCHEM.2010.1210

    Article  Google Scholar 

  15. T. S. Banipal, K. Singh, and P. K. Banipal, J. Solution Chem. 36, 1635 (2007). https://doi.org/10.1007/s10953-007-9212-8

    Article  CAS  Google Scholar 

  16. M. A. Jamal, B. Naseem, M. K. Khosa, M. Muneer, and J. H. Khan, J. Mol. Liq. 237, 14 (2017). https://doi.org/10.1016/j.molliq.2017.04.073

    Article  CAS  Google Scholar 

  17. D. Kumar, S. S. Shah, T. Sharma, D. Singh, and R. K. Bamezai, Chem. Thermodyn. Therm. Anal. 8, 100090 (2022). https://doi.org/10.1016/j.ctta.2022.100090

  18. G. R. Hedwig, J. Sol. Chem. 17, 383 (1988).

    Article  CAS  Google Scholar 

  19. A. Klofutar, J. Horvat, and D. Rudan-Tasič, Acta Chim. Slov. 53, 274 (2006).

    CAS  Google Scholar 

  20. M. A. Jamal, M. Rashad, M. K. Khosa, I. A. Bhatti, and K. M. Zia, Food Chem. 153, 140 (2014). https://doi.org/10.1016/j.foodchem.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  21. J. L. Richards, J. Chem. Educ. 70, 685 (1993). https://doi.org/10.1021/ed070p685

    Article  CAS  Google Scholar 

  22. S. Chauhan, M. S. Chauhan, J. Jyoti, and Rajni, J. Mol. Liq. 148, 24 (2009). https://doi.org/10.1016/j.molliq.2009.05.002

    Article  CAS  Google Scholar 

  23. A. Pal and S. Kumar, J. Chem. Sci. 117, 267 (2005). https://doi.org/10.1007/BF02709297

    Article  CAS  Google Scholar 

  24. M. Clugston and R. Fleming, Advanced Chemistry (Oxford Univ. Press, 2000).

    Google Scholar 

  25. R. Rani, A. Kumar, and R. K. Bamezai, J. Mol. Liq. 224, 1142 (2016). https://doi.org/10.1016/j.molliq.2016.10.063

    Article  CAS  Google Scholar 

  26. H. Kumar, M. Singla, and R. Jindal, J. Mol. Liq. 199, 385 (2014). https://doi.org/10.1016/j.molliq.2014.09.038

    Article  CAS  Google Scholar 

  27. O. S. Lawal, Food Chem. 95, 101 (2006). https://doi.org/10.1016/j.foodchem.2004.12.041

    Article  CAS  Google Scholar 

  28. A. Feakins, D. Freemantle, and K. G. Lawrence, J. Chem. Soc. Faraday Trans. 70, 795 (1974). https://doi.org/10.1039/F19747000795

    Article  CAS  Google Scholar 

  29. F. Salimi and F. Frouzesh, J. Chem. Thermodyn. 126, 22 (2018). https://doi.org/10.1016/j.jct.2018.06.008

    Article  CAS  Google Scholar 

  30. X. Jiang, C. Zhu, and Y. Ma, J. Chem. Thermodyn. 71, 50 (2014). https://doi.org/10.1016/j.jct.2013.11.002

    Article  CAS  Google Scholar 

  31. X. Ren, C. Zhu, and Y. Ma, J. Chem. Thermodyn. 93, 179 (2016). https://doi.org/10.1016/j.jct.2015.10.002

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We, the authors of this article, are extremely thankful to Department of Chemistry, ITER, Siksha О Anusandhan Deemed to be University for the facilities extended to us for completion of the experimental work presented here.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kshirabdhitanaya Dhal, Sulochana Singh or Malabika Talukdar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, K., Singh, S. & Talukdar, M. Investigation on Volumetric and Viscometric Properties of Aqueous Solutions of L-Aspartic Acid and L-Glutamic Acid in Presence of Sodium Acetate. Russ. J. Phys. Chem. 97, 3013–3027 (2023). https://doi.org/10.1134/S0036024423130137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130137

Keywords:

Navigation