Skip to main content
Log in

Comparing the Anti-diabetic Effect of Sleeve Gastrectomy with Transit Bipartition Against Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Using a Diabetic Rodent Model

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

Roux-en-Y gastric bypass (RYGB) has superior long-term diabetes remission outcomes to sleeve gastrectomy (SG). However, in regions with a high prevalence of gastric cancer, RYGB may not be the best option. This study aimed to investigate the anti-diabetic effect of SG with transit bipartition (SG-TB) compared with SG and RYGB.

Materials and Methods

A total of 32 diabetic Sprague-Dawley rat models were assigned to one of four groups: SG (n = 8), RYGB (n = 8), SG-TB (n = 8), and SHAM (n = 8). Body weight, food intake, blood glucose, and hormonal changes (glucagon-like peptide-1 (GLP-1), insulin, and glucagon) were measured to investigate the effect of surgery in all groups. Oral glucose tolerance test and insulin tolerance test were performed before and 8 weeks after surgery.

Results

There were no significant differences in the postoperative changes in body weight and food intake among the SG, RYGB, and SG-TB groups. Postoperatively, the RYGB and SG-TB groups had significantly higher GLP-1 levels and lower insulin levels than the SG group. Further, RYGB and SG-TB had significantly better glucose control improvements than SG. There were no significant differences in GLP-1, insulin, glucagon, and homeostasis model assessment of insulin resistance levels between RYGB and SG-TB. The preoperative and postoperative values of all variables in the SHAM group did not show significant differences.

Conclusion

In this study using a diabetes-induced rodent model, we found that the anti-diabetic effect of SG-TB is superior to that of SG and non-inferior to that of RYGB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu J, Xu H, He X, et al. Six-year changes in the prevalence of obesity and obesity-related diseases in Northeastern China from 2007 to 2013. Sci Rep. 2017;7:41518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Wang Z, Wang X, et al. Prevalence of abdominal obesity in China: results from a cross-sectional study of nearly half a million participants. Obesity (Silver Spring). 2019;27(11):1898–905.

    Article  Google Scholar 

  3. Ma RCW. Epidemiology of diabetes and diabetic complications in China. Diabetologia. 2018;61(6):1249–60.

    Article  PubMed  Google Scholar 

  4. Du X, Dai R, Zhou HX, et al. Bariatric surgery in china: how is this new concept going? Obes Surg. 2016;26(12):2906–12.

    Article  PubMed  Google Scholar 

  5. Welbourn R, Hollyman M, Kinsman R, et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the Fourth IFSO Global Registry Report 2018. Obes Surg. 2019;29(3):782–95.

    Article  PubMed  Google Scholar 

  6. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salminen P, Helmiö M, Ovaska J, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319(3):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peterli R, Wölnerhanssen BK, Peters T, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shoar S, Saber AA. Long-term and midterm outcomes of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass: a systematic review and meta-analysis of comparative studies. Surg Obes Relat Dis. 2017;13(2):170–80.

    Article  PubMed  Google Scholar 

  10. Golzarand M, Toolabi K, Farid R. The bariatric surgery and weight losing: a meta-analysis in the long- and very long-term effects of laparoscopic adjustable gastric banding, laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy on weight loss in adults. Surg Endosc. 2017;31(11):4331–45.

    Article  PubMed  Google Scholar 

  11. Yang P, Chen B, Xiang S, et al. Long-term outcomes of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass for morbid obesity: results from a meta-analysis of randomized controlled trials. Surg Obes Relat Dis. 2019;15(4):546–55.

    Article  CAS  PubMed  Google Scholar 

  12. Balakrishnan M, George R, Sharma A, et al. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep. 2017;19(8):36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lyons K, Le LC, Pham YT, et al. Gastric cancer: epidemiology, biology, and prevention: a mini review. Eur J Cancer Prev. 2019;28(5):397–412.

    Article  PubMed  Google Scholar 

  14. Santoro S, Castro LC, Velhote MC, et al. Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104–10.

    Article  PubMed  Google Scholar 

  15. Yormaz S, Yılmaz H, Ece I, et al. Laparoscopic ileal interposition with diverted sleeve gastrectomy versus laparoscopic transit bipartition with sleeve gastrectomy for better glycemic outcomes in T2DM patients. Obes Surg. 2018;28(1):77–86.

    Article  PubMed  Google Scholar 

  16. Azevedo FR, Santoro S, Correa-Giannella ML, et al. A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition. Obes Surg. 2018;28(10):3012–9.

    Article  PubMed  Google Scholar 

  17. Bilecik T. Metabolic effects of sleeve gastrectomy with transit bipartition in obese females with type 2 diabetes mellitus: results after 1-year follow-up. Obes Surg. 2019;29(3):805–10.

    Article  PubMed  Google Scholar 

  18. Topart P, Becouarn G, Finel JB. Is transit bipartition a better alternative to biliopancreatic diversion with duodenal switch for superobesity? Comparison of the early results of both procedures. Surg Obes Relat Dis. 2020;16(4):497–502.

    Article  PubMed  Google Scholar 

  19. Karaca FC. Effects of sleeve gastrectomy with transit bipartition on glycemic variables, lipid profile, liver enzymes, and nutritional status in type 2 diabetes mellitus patients. Obes Surg. 2020;30(4):1437–45.

    Article  PubMed  Google Scholar 

  20. Topart P, Becouarn G, Finel JB. Comparison of 2-year results of Roux-en-Y gastric bypass and transit bipartition with sleeve gastrectomy for superobesity. Obes Surg. 2020;30(9):3402–7.

    Article  PubMed  Google Scholar 

  21. Widjaja J, Dolo PR, Zhang Q, et al. Bypassed and preserved stomach resulted in superior glucose control in Sprague-Dawley rats with streptozotocin-induced diabetes. Sci Rep. 2019;9(1):9981.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dolo PR, Yao L, Li C, et al. Preserving duodenal-jejunal (foregut) transit does not impair glucose tolerance and diabetes remission following gastric bypass in type 2 diabetes Sprague-Dawley rat model. Obes Surg. 2018;28(5):1313–20.

    Article  PubMed  Google Scholar 

  23. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42.

    Article  CAS  PubMed  Google Scholar 

  24. Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology. 2017;158(12):4139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith EP, Polanco G, Yaqub A, et al. Altered glucose metabolism after bariatric surgery: what’s GLP-1 got to do with it? Metabolism. 2018;83:159–66.

  26. Egerod KL, Engelstoft MS, Grunddal KV, et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology. 2012;153(12):5782–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nosso G, Griffo E, Cotugno M, et al. Comparative effects of Roux-en-Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one-year prospective study. Horm Metab Res. 2016;48(5):312–7.

    Article  CAS  PubMed  Google Scholar 

  29. Castagneto Gissey L, Casella Mariolo J, Mingrone G. Intestinal peptide changes after bariatric and minimally invasive surgery: relation to diabetes remission. Peptides. 2018 Feb;100:114–22.

    Article  CAS  PubMed  Google Scholar 

  30. Melissas J, Koukouraki S, Askoxylakis J, et al. Sleeve gastrectomy: a restrictive procedure? Obes Surg. 2007;17(1):57–62.

    Article  PubMed  Google Scholar 

  31. Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice. Ann Surg. 2011;254(1):73–82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mingrone G, Cummings DE. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery. Surg Obes Relat Dis. 2016;12(6):1199–205.

    Article  PubMed  Google Scholar 

  33. Vrbikova J, Kunesova M, Kyrou I, et al. Insulin sensitivity and secretion in obese type 2 diabetic women after various bariatric operations. Obes Facts. 2016;9(6):410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi X, Chacko S, Li F, et al. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity. Mol Metab. 2017;6(11):1350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rebelos E, Astiarraga B, Bizzotto R, et al. GLP-1 response to sequential mixed meals: influence of insulin resistance. Clin Sci (Lond). 2017;131(24):2901–10.

    Article  CAS  Google Scholar 

  36. Yaribeygi H, Sathyapalan T, Sahebkar A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci. 2019;234:116776.

    Article  CAS  PubMed  Google Scholar 

  37. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kulina GR, Rayfield EJ. The role of glucagon in the pathophysiology and management of diabetes. Endocr Pract. 2016;22(5):612–21.

    Article  PubMed  Google Scholar 

  39. Lee YH, Wang MY, Yu XX, et al. Glucagon is the key factor in the development of diabetes. Diabetologia. 2016;59(7):1372–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hædersdal S, Lund A, Knop FK, et al. The role of glucagon in the pathophysiology and treatment of type 2 diabetes. Mayo Clin Proc. 2018;93(2):217–39.

    Article  PubMed  Google Scholar 

  41. Duca FA, Côté CD, Rasmussen BA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy R, Clarke MG, Evennett NJ, et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: a prospective randomized double-blind trial. Obes Surg. 2018;28(2):293–302.

    Article  PubMed  Google Scholar 

  43. Widjaja J, Pan H, Dolo PR, et al. Short-term diabetes remission outcomes in patients with BMI ≤ 30 kg/m2 following sleeve gastrectomy. Obes Surg. 2020;30(1):18–22.

    Article  PubMed  Google Scholar 

  44. Aminian A, Brethauer SA, Andalib A, et al. Can sleeve gastrectomy “cure” diabetes? Long-term metabolic effects of sleeve gastrectomy in patients with type 2 diabetes. Ann Surg. 2016;264(4):674–81.

    Article  PubMed  Google Scholar 

  45. Lee MH, Almalki OM, Lee WJ, et al. Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: long-term result and recurrence of diabetes. Obes Surg. 2020;30(10):3669–74.

    Article  PubMed  Google Scholar 

  46. Lee WJ, Almuhanna M. Paired editorial: effects of sleeve gastrectomy with transit bipartition on glycemic variables, lipid profile, liver enzymes and nutritional status in type 2 diabetes mellitus patients: a 1-year follow-up study. Obes Surg. 2020;30(3):1128–9.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Program Project of Xuzhou (KC19157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocheng Zhu.

Ethics declarations

Statement of Animal Right

All applicable institutional and national guidelines of the People’s Republic of China for the care and use of animals were followed.

Statement of Informed Consent

Informed consent does not apply.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Widjaja, J., Dolo, P.R. et al. Comparing the Anti-diabetic Effect of Sleeve Gastrectomy with Transit Bipartition Against Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Using a Diabetic Rodent Model. OBES SURG 31, 2203–2210 (2021). https://doi.org/10.1007/s11695-021-05256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05256-6

Keywords

Navigation