Skip to main content

Advertisement

Log in

Sleeve Gastrectomy Reduces Hepatic Steatosis by Improving the Coordinated Regulation of Aquaglyceroporins in Adipose Tissue and Liver in Obese Rats

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Glycerol constitutes an important metabolite for the control of lipid accumulation and glucose homeostasis. Our aim was to investigate the potential role of aquaglyceroporins, which are glycerol channels mediating glycerol efflux in adipocytes (AQP3 and AQP7) and glycerol influx (AQP9) in hepatocytes, in the improvement of adiposity and hepatic steatosis after sleeve gastrectomy in an experimental model of diet-induced obesity (DIO).

Methods

Male Wistar DIO rats (n = 161) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions [fed ad libitum a normal diet (ND) or a high-fat diet (HFD) or pair-fed to the amount of food eaten by sleeve-gastrectomized animals]. The tissue distribution and expression of AQPs in biopsies of epididymal (EWAT) and subcutaneous (SCWAT) white adipose tissue and liver were analyzed by real-time PCR, Western blot, and immunohistochemistry.

Results

Four weeks after surgery, DIO rats undergoing sleeve gastrectomy showed a reduction in body weight, whole-body adiposity, and hepatic steatosis. DIO was associated with a tendency towards an increase in EWAT AQP3 and SCWAT AQP7 and a decrease in hepatic AQP9. Sleeve gastrectomy downregulated AQP7 in both fat depots and upregulated AQP3 in EWAT, without changing hepatic AQP9. Aqp7 transcript levels in EWAT and SCWAT were positively associated with adiposity and glycemia, while Aqp9 mRNA was negatively correlated with markers of hepatic steatosis and insulin resistance.

Conclusion

Our results show, for the first time, that sleeve gastrectomy, a widely applied bariatric surgery procedure, restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, thereby improving whole-body adiposity and hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Adipo-IR:

Adipocyte insulin resistance index

AQP:

Aquaporin

CSA:

Cell surface area

DIO:

Diet-induced obesity

EWAT:

Epididymal white adipose tissue

FFA:

Free fatty acids

GK:

Glycerol kinase

HFD:

High-fat diet

HOMA:

Homeostasis model assessment

NAFLD:

Non-alcoholic fatty liver disease

ND:

Normal diet

PPARγ:

Peroxisome proliferator-activator receptor γ

QUICKI:

Quantitative insulin sensitivity check index

RT:

Room temperature

SCWAT:

Subcutaneous white adipose tissue

SREBF1:

Sterol regulatory element-binding factor 1

TG:

Triacylglycerol

References

  1. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol. 2004;5:687–98.

    Article  CAS  PubMed  Google Scholar 

  2. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13:259–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Frühbeck G. Obesity: aquaporin enters the picture. Nature. 2005;438:436–7.

    Article  PubMed  Google Scholar 

  4. Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10:1548–56.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278:30413–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A. 2005;102:10993–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, et al. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem. 2005;280:15493–6.

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez A, Catalán V, Gómez-Ambrosi J, García-Navarro S, Rotellar F, Valentí V, et al. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab. 2011;96:E586–97.

    Article  PubMed  Google Scholar 

  9. Laforenza U, Scaffino MF, Gastaldi G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One. 2013;8:e54474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafré V, et al. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity (Silver Spring). 2014;22:2010–7.

  11. Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes. 2002;51:2915–21.

    Article  CAS  PubMed  Google Scholar 

  12. Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, et al. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A. 2007;104:3609–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A. 2000;97:4386–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Calamita G, Gena P, Ferri D, Rosito A, Rojek A, Nielsen S, et al. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol Cell. 2012;104:342–51.

    Article  CAS  PubMed  Google Scholar 

  15. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun. 2002;294:630–4.

    Article  CAS  PubMed  Google Scholar 

  16. Marrades MP, Milagro FI, Martínez JA, Moreno-Aliaga MJ. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Commun. 2006;339:785–9.

    Article  CAS  PubMed  Google Scholar 

  17. Prudente S, Flex E, Morini E, Turchi F, Capponi D, De Cosmo S, et al. A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes. 2007;56:1468–74.

    Article  CAS  PubMed  Google Scholar 

  18. Catalán V, Gómez-Ambrosi J, Pastor C, Rotellar F, Silva C, Rodríguez A, et al. Influence of morbid obesity and insulin resistance on gene expression levels of AQP7 in visceral adipose tissue and AQP9 in liver. Obes Surg. 2008;18:695–701.

    Article  PubMed  Google Scholar 

  19. Gena P, Mastrodonato M, Portincasa P, Fanelli E, Mentino D, Rodríguez A, et al. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of non-alcoholic fatty liver disease. PLoS One. 2013;8:e78139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rodríguez A, Gena P, Méndez-Giménez L, Rosito A, Valentí V, Rotellar F, et al. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes. 2014;38:1213–20.

    Article  Google Scholar 

  21. Wang C, Lv ZL, Kang YJ, Xiang TX, Wang PL, Jiang Z. Aquaporin-9 downregulation prevents steatosis in oleic acid-induced non-alcoholic fatty liver disease cell models. Int J Mol Med. 2013;32:1159–65.

    CAS  PubMed  Google Scholar 

  22. Deitel M, Crosby RD, Gagner M. The first international consensus summit for sleeve gastrectomy (SG), New York City, October 25-27, 2007. Obes Surg. 2008;18:487–96.

    Article  PubMed  Google Scholar 

  23. Gagner M, Deitel M, Erickson AL, Crosby RD. Survey on laparoscopic sleeve gastrectomy (LSG) at the Fourth International Consensus Summit on Sleeve Gastrectomy. Obes Surg. 2013;23:2013–7.

    Article  PubMed  Google Scholar 

  24. de Bona CJ, Bettiol J, d'Acampora AJ, Castelan JV, de Souza JC, Bressiani V, et al. Sleeve gastrectomy model in Wistar rats. Obes Surg. 2007;17:957–61.

    Article  Google Scholar 

  25. Valentí V, Martín M, Ramírez B, Gómez-Ambrosi J, Rodríguez A, Catalán V, et al. Sleeve gastrectomy induces weight loss in diet-induced obese rats even if high-fat feeding is continued. Obes Surg. 2011;21:1438–43.

    Article  PubMed  Google Scholar 

  26. Rodríguez A, Becerril S, Valentí V, Ramírez B, Martín M, Méndez-Giménez L, et al. Sleeve gastrectomy reduces blood pressure in obese (fa/fa) Zucker rats. Obes Surg. 2012;22:309–15.

    Article  PubMed  Google Scholar 

  27. Rodríguez A, Gómez-Ambrosi J, Catalán V, Gil MJ, Becerril S, Sáinz N, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes. 2009;33:541–52.

    Article  Google Scholar 

  28. Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, et al. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor γ. J Biol Chem. 2001;276:48572–9.

    CAS  PubMed  Google Scholar 

  29. Frühbeck G, Alonso R, Marzo F, Santidrián S. A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal Biochem. 1995;225:206–12.

    Article  PubMed  Google Scholar 

  30. Rodríguez A, Becerril S, Valentí V, Moncada R, Méndez-Giménez L, Ramírez B, et al. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats. Obes Surg. 2012;22:1481–90.

    Article  PubMed  Google Scholar 

  31. Muruzabal FJ, Frühbeck G, Gómez-Ambrosi J, Archanco M, Burrell MA. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128:149–52.

    Article  CAS  PubMed  Google Scholar 

  32. Frühbeck G, Gómez-Ambrosi J, Salvador J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001;15:333–40.

    Article  PubMed  Google Scholar 

  33. Catalán V, Gómez-Ambrosi J, Rotellar F, Silva C, Gil MJ, Rodríguez A, et al. The obestatin receptor (GPR39) is expressed in human adipose tissue and is down-regulated in obesity-associated type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2007;66:598–601.

    Google Scholar 

  34. Becerril S, Rodríguez A, Catalán V, Sainz N, Ramírez B, Collantes M, et al. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function. PLoS One. 2010;5:e10962.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, et al. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol. 2007;292:F956–65.

    Article  CAS  PubMed  Google Scholar 

  36. Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol. 2014. doi:10.1016/j.mce.2014.06.017.

    PubMed  Google Scholar 

  37. Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Executive Committee of the European Association for the Study of Obesity. Obesity: the gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.

    Article  PubMed  Google Scholar 

  38. Wilson-Perez HE, Chambers AP, Sandoval DA, Stefater MA, Woods SC, Benoit SC, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2013;37:288–95.

    Article  CAS  Google Scholar 

  39. Patrikakos P, Toutouzas KG, Perrea D, Menenakos E, Pantopoulou A, Thomopoulos T, et al. A surgical rat model of sleeve gastrectomy with staple technique: long-term weight loss results. Obes Surg. 2009;19:1586–90.

    Article  PubMed  Google Scholar 

  40. Stefater MA, Perez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138:2426–36. 36 e1-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lancha A, Moncada R, Valentí V, Rodríguez A, Catalán V, Becerril S, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24:1702–8.

  42. Frühbeck G, Díez Caballero A, Gil MJ. Fundus functionality and ghrelin concentrations after bariatric surgery. N Engl J Med. 2004;350:308–9.

    Article  PubMed  Google Scholar 

  43. Madeira A, Camps M, Zorzano A, Moura TF, Soveral G. Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes. PLoS One. 2013;8:e83442.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem. 2000;275:20896–902.

    Article  CAS  PubMed  Google Scholar 

  45. Yasui H, Kubota M, Iguchi K, Usui S, Kiho T, Hirano K. Membrane trafficking of aquaporin 3 induced by epinephrine. Biochem Biophys Res Commun. 2008;373:613–7.

    Article  CAS  PubMed  Google Scholar 

  46. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and the American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.

    Article  PubMed  Google Scholar 

  47. Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol. 2006;40 Suppl 1:S5–10.

    PubMed  Google Scholar 

  48. Dixon JB, Bhathal PS, O'Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16:1278–86.

    Article  PubMed  Google Scholar 

  49. Burza MA, Romeo S, Kotronen A, Svensson PA, Sjoholm K, Torgerson JS, et al. Long-term effect of bariatric surgery on liver enzymes in the Swedish obese subjects (SOS) study. PLoS One. 2013;8:e60495.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wang Y, Liu J. Sleeve gastrectomy relieves steatohepatitis in high-fat-diet-induced obese rats. Obes Surg. 2009;19:921–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kawano Y, Ohta M, Hirashita T, Masuda T, Inomata M, Kitano S. Effects of sleeve gastrectomy on lipid metabolism in an obese diabetic rat model. Obes Surg. 2013;23:1947–56.

    Article  PubMed  Google Scholar 

  52. Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91:4753–61.

    Article  CAS  PubMed  Google Scholar 

  53. Kalhan SC, Mahajan S, Burkett E, Reshef L, Hanson RW. Glyceroneogenesis and the source of glycerol for hepatic triacylglycerol synthesis in humans. J Biol Chem. 2001;276:12928–31.

    Article  CAS  PubMed  Google Scholar 

  54. Jelen S, Wacker S, Aponte-Santamaria C, Skott M, Rojek A, Johanson U, et al. Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J Biol Chem. 2011;286:44319–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014;52:R165–78.

    Article  CAS  PubMed  Google Scholar 

  56. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun. 2000;276:1118–28.

    Article  CAS  PubMed  Google Scholar 

  57. Nicchia GP, Frigeri A, Nico B, Ribatti D, Svelto M. Tissue distribution and membrane localization of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem. 2001;49:1547–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the valuable collaboration of all the staff of the breeding house of the University of Navarra.

Conflict of Interest

L.M.-G., S.B., R.M., V.V., B.R., A.L., J.G., I.B., J.A.C., V.C., S.F., J.G.-A., A.R., and G.F. declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants.

Funding

This work was supported by Fondo de Investigación Sanitaria-FEDER (FIS PI10/01677, PI12/00515, and PI13/01430) from the Spanish Instituto de Salud Carlos III, the Department of Health of the Gobierno de Navarra (61/2014) as well as by the Plan de Investigación de la Universidad de Navarra (project PIUNA 2011–14). CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) is an initiative of the Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Frühbeck.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Giménez, L., Becerril, S., Moncada, R. et al. Sleeve Gastrectomy Reduces Hepatic Steatosis by Improving the Coordinated Regulation of Aquaglyceroporins in Adipose Tissue and Liver in Obese Rats. OBES SURG 25, 1723–1734 (2015). https://doi.org/10.1007/s11695-015-1612-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-015-1612-z

Keywords

Navigation