Skip to main content

Advertisement

Log in

Gastric Plication Improves Glycemia Partly by Restoring the Altered Expression of Aquaglyceroporins in Adipose Tissue and the Liver in Obese Rats

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Gastric plication is a minimally invasive bariatric surgical procedure, where the greater curvature is plicated inside the gastric lumen. Our aims were to analyze the effectiveness of gastric plication on the resolution of obesity, impaired glucose tolerance, and fatty liver in an experimental model of diet-induced obesity (DIO) and to evaluate changes in glycerol metabolism, a key substrate for adiposity and gluconeogenesis, in adipose tissue and the liver.

Methods

Male Wistar DIO rats (n = 58) were subjected to surgical (sham operation and gastric plication) or dietary interventions [fed a normal diet (ND) or high-fat diet (HFD) or pair-fed to the amount of food eaten by gastric-plicated animals]. The expression of aquaglyceroporins (AQPs) in epididymal (EWAT) and subcutaneous (SCWAT) fat and the liver was analyzed by real-time PCR and Western blot.

Results

Gastric plication did not result in a significant weight loss in DIO rats, showing a modest reduction in whole-body adiposity and hepatic steatosis. However, gastric-plicated animals exhibited an improvement in basal glycemia and glucose clearance, without changes in hepatic gluconeogenic genes. DIO was associated with an increase in glycerol, higher AQP3 and AQP7 in EWAT and SCWAT, and a decrease in hepatic AQP9. Gastric plication downregulated AQP3 in both fat depots without changes in adipose AQP7 and hepatic AQP9.

Conclusion

Gastric plication results in a modest reduction in adiposity and hepatosteatosis but restores glycemia by downregulating AQP3, which entails lower efflux of glycerol from fat, lower plasma glycerol availability, and a reduced use of glycerol as a substrate for hepatic gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Adipo-IR:

Adipocyte insulin resistance index

AQP:

Aquaporin

CSA:

Cell surface area

DIO:

Diet-induced obesity

EWAT:

Epididymal white adipose tissue

EWL:

Excess weight loss

FFA:

Free fatty acids

GK:

Glycerol kinase

HFD:

High-fat diet

HOMA:

Homeostasis model assessment

NAFLD:

Non-alcoholic fatty liver disease

ND:

Normal diet

PCK1:

Phosphoenolpyruvate carboxykinase 1

PPARγ:

Peroxisome proliferator activator receptor γ

PRWAT:

Perirenal white adipose tissue

QUICKI:

Quantitative insulin sensitivity check index

SCWAT:

Subcutaneous white adipose tissue

SREBF1:

Sterol regulatory element-binding factor 1

TG:

Triacylglycerol

References

  1. Reshef L, Olswang Y, Cassuto H, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278:30413–6.

    Article  CAS  PubMed  Google Scholar 

  2. Frühbeck G. Obesity: aquaporin enters the picture. Nature. 2005;438:436–7.

    Article  PubMed  Google Scholar 

  3. Rodríguez A, Catalán V, Gómez-Ambrosi J, et al. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10:1548–56.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hibuse T, Maeda N, Funahashi T, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A. 2005;102:10993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hara-Chikuma M, Sohara E, Rai T, et al. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem. 2005;280:15493–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rodríguez A, Catalán V, Gómez-Ambrosi J, et al. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab. 2011;96:E586–97.

    Article  PubMed  Google Scholar 

  7. Laforenza U, Scaffino MF, Gastaldi G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One. 2013;8:e54474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madeira A, Fernandez-Veledo S, Camps M, et al. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity. 2014;22:2010–7.

    Article  CAS  PubMed  Google Scholar 

  9. Madeira A, Mosca AF, Moura TF, et al. Aquaporin-5 is expressed in adipocytes with implications in adipose differentiation. IUBMB Life. 2015;67:54–60.

    Article  CAS  PubMed  Google Scholar 

  10. Peroni O, Large V, Beylot M. Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Am J Phys. 1995;269:E516–23.

    CAS  Google Scholar 

  11. Rojek AM, Skowronski MT, Fuchtbauer EM, et al. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A. 2007;104:3609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jelen S, Wacker S, Aponte-Santamaria C, et al. Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J Biol Chem. 2011;286:44319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodríguez A, Gena P, Méndez-Giménez L, et al. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes. 2014;38:1213–20.

    Article  Google Scholar 

  14. Ma T, Song Y, Yang B, et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A. 2000;97:4386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marrades MP, Milagro FI, Martínez JA, et al. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Commun. 2006;339:785–9.

    Article  CAS  PubMed  Google Scholar 

  16. Prudente S, Flex E, Morini E, et al. A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes. 2007;56:1468–74.

    Article  CAS  PubMed  Google Scholar 

  17. Ceperuelo-Mallafré V, Miranda M, Chacón MR, et al. Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes. J Clin Endocrinol Metab. 2007;92:3640–5.

    Article  PubMed  Google Scholar 

  18. Catalán V, Gómez-Ambrosi J, Rotellar F, et al. Validation of endogenous control genes in human adipose tissue: relevance to obesity and obesity-associated type 2 diabetes mellitus. Horm Metab Res. 2007;39:495–500.

    Article  PubMed  Google Scholar 

  19. Gena P, Mastrodonato M, Portincasa P, et al. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of non-alcoholic fatty liver disease. PLoS One. 2013;8:e78139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wakayama Y, Hirako S, Ogawa T, et al. Upregulated expression of AQP7 in the skeletal muscles of obese ob/ob mice. Acta Histochem Cytochem. 2014;47:27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Catalán V, Gómez-Ambrosi J, Pastor C, et al. Influence of morbid obesity and insulin resistance on gene expression levels of AQP7 in visceral adipose tissue and AQP9 in liver. Obes Surg. 2008;18:695–701.

    Article  PubMed  Google Scholar 

  22. Rodríguez A, Moreno NR, Balaguer I, et al. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci Rep. 2015;5:12067.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Méndez-Giménez L, Becerril S, Moncada R, et al. Sleeve gastrectomy reduces hepatic steatosis by improving the coordinated regulation of aquaglyceroporins in adipose tissue and liver in obese rats. Obes Surg. 2015;25:1723–34.

    Article  PubMed  Google Scholar 

  24. Talebpour M, Motamedi SM, Talebpour A, et al. Twelve year experience of laparoscopic gastric plication in morbid obesity: development of the technique and patient outcomes. Ann Surg Innov Res. 2012;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramos A, Galvao Neto M, Galvao M, et al. Laparoscopic greater curvature plication: initial results of an alternative restrictive bariatric procedure. Obes Surg. 2010;20:913–8.

    Article  PubMed  Google Scholar 

  26. Brethauer SA, Harris JL, Kroh M, et al. Laparoscopic gastric plication for treatment of severe obesity. Surg Obes Relat Dis. 2011;7:15–22.

    Article  PubMed  Google Scholar 

  27. Niazi M, Maleki AR, Talebpour M. Short-term outcomes of laparoscopic gastric plication in morbidly obese patients: importance of postoperative follow-up. Obes Surg. 2013;23:87–92.

    Article  PubMed  Google Scholar 

  28. Verdi D, Prevedello L, Albanese A, et al. Laparoscopic gastric plication (LGCP) vs sleeve gastrectomy (LSG): a single institution experience. Obes Surg. 2015;25:1653–7.

    Article  PubMed  Google Scholar 

  29. Fusco PE, Poggetti RS, Younes RN, et al. Evaluation of gastric greater curvature invagination for weight loss in rats. Obes Surg. 2006;16:172–7.

    Article  PubMed  Google Scholar 

  30. Guimarães M, Nora M, Ferreira T, et al. Sleeve gastrectomy and gastric plication in the rat result in weight loss with different endocrine profiles. Obes Surg. 2013;23:710–7.

    Article  PubMed  Google Scholar 

  31. Kourkoulos M, Giorgakis E, Kokkinos C, et al. Laparoscopic gastric plication for the treatment of morbid obesity: a review. Minim Invasive Surg. 2012;2012:696348.

    PubMed  PubMed Central  Google Scholar 

  32. Darido E, Moore JR. Comparison of gastric fundus invagination and gastric greater curvature plication for weight loss in a rat model of diet-induced obesity. Obes Surg. 2014;24:897–902.

    Article  PubMed  Google Scholar 

  33. Martín M, Burrell MA, Gómez-Ambrosi J, et al. Short- and long-term changes in gastric morphology and histopathology following sleeve gastrectomy in diet-induced obese rats. Obes Surg. 2012;22:634–40.

    Article  PubMed  Google Scholar 

  34. Becerril S, Rodríguez A, Catalán V, et al. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function. PLoS One. 2010;5:e10962.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Zhao Y, Xu C, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep. 2014;4:5832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kishida K, Shimomura I, Nishizawa H, et al. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor γ. J Biol Chem. 2001;276:48572–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang YJ, Kim P, Lu YF, et al. PPARgamma activators stimulate aquaporin 3 expression in keratinocytes/epidermis. Exp Dermatol. 2011;20:595–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lebeck J, Cheema MU, Skowronski MT, et al. Hepatic AQP9 expression in male rats is reduced in response to PPARalpha agonist treatment. Am J Physiol Gastrointest Liver Physiol. 2015;308:G198–205.

    Article  CAS  PubMed  Google Scholar 

  39. Frühbeck G, Toplak H, Woodward E, et al. Obesity: the gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.

    Article  PubMed  Google Scholar 

  40. Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol. 2015;11:465–77.

    Article  PubMed  Google Scholar 

  41. Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes. 2009;33:541–52.

    Article  Google Scholar 

  42. Ivano FH, Silva Lde M, Seniski GG, et al. Comparison of ghrelin plasma levels between pre and postoperative period in patients submitted to gastric plication associated with fundoplication. Arq Bras Cir Dig. 2013;26(Suppl 1):8–12.

    Article  PubMed  Google Scholar 

  43. Page AJ, Slattery JA, Milte C, et al. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1376–84.

    Article  CAS  PubMed  Google Scholar 

  44. Kishida K, Kuriyama H, Funahashi T, et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem. 2000;275:20896–902.

    Article  CAS  PubMed  Google Scholar 

  45. Yasui H, Kubota M, Iguchi K, et al. Membrane trafficking of aquaporin 3 induced by epinephrine. Biochem Biophys Res Commun. 2008;373:613–7.

    Article  CAS  PubMed  Google Scholar 

  46. Calamita G, Gena P, Ferri D, et al. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol Cell. 2012;104:342–51.

    Article  CAS  PubMed  Google Scholar 

  47. Tardelli M, Moreno-Viedma V, Zeyda M, et al. Adiponectin regulates aquaglyceroporin expression in hepatic stellate cells altering their functional state. J Gastroenterol Hepatol. 2016; doi:10.1111/jgh.13415.

    Google Scholar 

  48. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    Article  PubMed  Google Scholar 

  49. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402.

    Google Scholar 

  50. Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91:4753–61.

    Article  CAS  PubMed  Google Scholar 

  51. Dixon JB, Bhathal PS, O’Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16:1278–86.

    Article  PubMed  Google Scholar 

  52. Burza MA, Romeo S, Kotronen A, et al. Long-term effect of bariatric surgery on liver enzymes in the Swedish obese subjects (SOS) study. PLoS One. 2013;8:e60495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bower G, Athanasiou T, Isla AM, et al. Bariatric surgery and nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27:755–68.

    Article  CAS  PubMed  Google Scholar 

  54. Kubota N, Kubota T, Kajiwara E, et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun. 2016;7:12977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Froylich D, Corcelles R, Daigle C, et al. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on nonalcoholic fatty liver disease: a comparative study. Surg Obes Relat Dis. 2016;12:127–31.

    Article  PubMed  Google Scholar 

  56. Moncada R, Becerril S, Rodríguez A, et al. Sleeve gastrectomy reduces body weight and improves metabolic profile also in obesity-prone rats. Obes Surg. 2016;26:1537–48.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the valuable collaboration of all the staff of the breeding house of the University of Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaia Rodríguez.

Ethics declarations

This article does not contain any studies with human participants.

All applicable institutional and national guidelines for the care and use of animals were followed. All experimental procedures conformed to the European guidelines for the care and use of laboratory animals (directive 2010/63/EU) and were approved by the Ethical Committee for Animal Experimentation of the University of Navarra (049/10).

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by Fondo de Investigación Sanitaria-FEDER (FIS PI13/01430 and PI16/01217) from the Instituto de Salud Carlos III, by the Department of Health of the Gobierno de Navarra (61/2014), and by the Plan de Investigación de la Universidad de Navarra (project PIUNA 2011-14). CIBEROBN is an initiative of the Instituto de Salud Carlos III, Spain.

Electronic Supplementary Material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(DOCX 585 kb)

ESM 4

(DOCX 279 kb)

ESM 5

(DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Giménez, L., Becerril, S., Moncada, R. et al. Gastric Plication Improves Glycemia Partly by Restoring the Altered Expression of Aquaglyceroporins in Adipose Tissue and the Liver in Obese Rats. OBES SURG 27, 1763–1774 (2017). https://doi.org/10.1007/s11695-016-2532-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-016-2532-2

Keywords

Navigation