Skip to main content

Advertisement

Log in

Short-Term Outcomes of Laparoscopic Single Anastomosis Gastric Bypass (LSAGB) for the Treatment of Type 2 Diabetes in Lower BMI (<30 kg/m2) Patients

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Bariatric surgery is an efficient procedure for remission of type 2 diabetes (T2DM) in morbid obesity. However, in Asian countries, mean body mass index (BMI) of T2DM patients is about 25 kg/m2. Various data on patients undergoing gastric bypass surgery showed that control of T2DM after surgery occurs rapidly and somewhat independent to weight loss. We hypothesized that in non-obese patients with T2DM, the glycemic control would be achieved as a consequence of gastric bypass surgery.

Methods

From September 2009, the 172 patients have had laparoscopic single anastomosis gastric bypass (LSAGB) surgery. Among them, 107 patients have been followed up more than 1 year. We analyzed the dataset of these patients. Values related to diabetes were measured before and 1, 2, and 3 years after the surgery.

Results

The mean BMI decreased during the first year after the surgery but plateaued after that. The mean glycosylated hemoglobin level decreased continuously. The mean fasting and postglucose loading plasma glucose level also decreased.

Conclusion

After LSAGB surgery in non-obese T2DM patients, the control of T2DM was possible safely and effectively. However, longer follow-up with matched control group is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zimmer P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–87.

    Article  Google Scholar 

  2. Guh DP, Zhang W, Bansback N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Korea Health Statistics 2010: Korea National Health and Nutrition Examination Study, the Ministry of Health and Welfare, 2010 (http://knhanes.cdc.go.kr) (KNHANES V-1).

  4. Chan JM, Rimm EB, Colditz GA, et al. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  CAS  PubMed  Google Scholar 

  5. Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122:481–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ambady R, Ronald Ching WM, Chamukuttau S. Diabetes in Asia. Lancet. 2010;375:408–18.

    Article  Google Scholar 

  7. Juliana CN, Vasanti M, Weiping J, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–37.

    Article  Google Scholar 

  8. Oh JY, Hong YS, Sung YA, et al. Prevalence and factor analysis of metabolic syndrome in an urban Korean population. Diabetes Care. 2004;27:2027–32.

    Article  PubMed  Google Scholar 

  9. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  CAS  PubMed  Google Scholar 

  10. Mingrone G, DeGaetano A, Greco AV, et al. Reversibility of insulin resistance in obese diabetic patients: role of plasma lipids. Diabetologia. 1997;40:599–605.

    Article  CAS  PubMed  Google Scholar 

  11. Dixon JB, Zimmet P, Alberti KG, et al. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28:628–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rutledge R. The mini-gastric bypass: experience with the first 1274 cases. Obes Surg. 2001;11:276–80.

    Article  CAS  PubMed  Google Scholar 

  13. Pories WJ, Albrecht RJ. Etiology of type 2 diabetes mellitus: role of the foregut. World J Surg. 2001;25:527–31.

    Article  CAS  PubMed  Google Scholar 

  14. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg. 2002;236:554–9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Scott EG, Frank LG, Stanley K. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg. 2002;137:1109–17.

    Article  Google Scholar 

  16. American Diabetes Association. Diabetes management in correctional institutions. Diabetes Care. 2010;33:S75–81.

    Article  PubMed Central  Google Scholar 

  17. Scopinaro N, Marinari G, Camerini GB, et al. Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care. 2005;28:2406–11.

    Article  PubMed  Google Scholar 

  18. Tejirian T, Jensen C, Dutson E. Bariatric surgery and type 2 diabetes mellitus: surgically induced remission. J Diabetes Sci Technol. 2008;2:685–91.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bose M, Olivan B, Teixeira J, et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: what are the evidence? Obes Surg. 2009;19:217–29.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Padwal RS, Gabr RQ, Sharma AM, et al. Effect of gastric bypass surgery on the absorption and bioavailability of metformin. Diabetes Care. 2011;34:1295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Patti ME, Houten SM, Bianco A, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–7.

    Article  CAS  PubMed  Google Scholar 

  22. Laferrere B, McGinty J, Heshka S, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rubino F, R’bibo SL, del Genio F, et al. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol. 2010;6:102–9.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Garcia-Caballero M, Valle M, Martinez-Moreno JM, et al. Resolution of diabetes mellitus and metabolic syndrome in normal weight 24-29 BMI patients with one anastomosis gastric bypass. Nutr Hosp. 2012;27:623–31.

    CAS  PubMed  Google Scholar 

  26. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Roger HU, Anna ME. Entero-insular axis. Arch Intern Med. 1969;123:261–6.

    Article  Google Scholar 

  28. Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16:75–85.

    Article  CAS  PubMed  Google Scholar 

  29. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46:1954–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Preitner F, Ibberson M, Franglin I, et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest. 2004;113:635–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Timothy JK, Joel FH. The glucagon-like peptides. Endocr Rev. 1999;20:876–913.

    Article  Google Scholar 

  32. Fiona MG, Leanne W, Anna KS, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003;52:1147–54.

    Article  Google Scholar 

  33. Juris JM, Michael AN, Wolfgang ES, et al. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept. 2002;107:1–13.

    Article  Google Scholar 

  34. Creutzfeldt W. The entero-insular axis in type 2 diabetes—incretins as therapeutic agents. Exp Clin Endocrinol Diabetes. 2001;109(Suppl2):S288–303.

    Article  CAS  PubMed  Google Scholar 

  35. Santoro S, Castro LC, Velhote MC, et al. Sleeve gastrectomy with transit bipartition. A potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256:104–10.

    Article  PubMed  Google Scholar 

  36. Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003;88:2706–13.

    Article  CAS  PubMed  Google Scholar 

  37. Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–13.

    Article  CAS  PubMed  Google Scholar 

  38. Fetner R, McGinty J, Russell C, et al. Incretins, diabetes, and bariatric surgery: a review. Surg Obes Relat Dis. 2005;1:589–98.

    Article  PubMed  Google Scholar 

  39. Wang W, Wei PL, Lee YC, et al. Short-term results of laparoscopic mini-gastric bypass. Obes Surg. 2005;15(5):648–54.

    Article  PubMed  Google Scholar 

  40. Rutledge R, Walsh TR. Continued excellent results with the mini-gastric bypass: six-year study in 2,410 patients. Obes Surg. 2005;15(9):1304–8.

    Article  PubMed  Google Scholar 

  41. Piazza L, Ferrara F, Leanza S, et al. A laparoscopic mini-gastric bypass: short-term single-institute experience. Updat Surg. 2011;63(4):239–42.

    Article  Google Scholar 

  42. Noun R, Skaff J, Riachi E, et al. One thousand consecutive mini-gastric bypass: short- and long-term outcome. Obes Surg. 2012;22(5):697–703.

    Article  PubMed  Google Scholar 

  43. Lee WJ, Wang W, Lee YC, et al. Laparoscopic mini-gastric bypass: experience with tailored bypass limb according to body weight. Obes Surg. 2008;18(3):294–9.

    Article  PubMed  Google Scholar 

  44. Dang H, Arias E, Szomstein S, et al. Laparoscopic conversion of distal mini-gastric bypass to proximal Roux-en-Y gastric bypass for malnutrition: case report and review of the literature. SORD. 2009;5:383–6.

    Google Scholar 

  45. Johnson WH, Fernanadez AZ, Farrell TM, et al. Surgical revision of loop gastric bypass procedure: multicenter review of complications and conversions to Roux-en-Y gastric bypass. SORD. 2007;3:37–41.

    Google Scholar 

  46. Azagury DE, Abu Dayyeh BK, Greenwalt IT, et al. Marginal ulceration after Roux-en-Y gastric bypass surgery: characteristics, risk factors, treatment, and outcomes. Endoscopy. 2011;43:950–4.

    Article  CAS  PubMed  Google Scholar 

  47. Kim YG, Hahn S, Oh TJ, et al. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia. 2013;56:696–708.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The point of this work was presented at the International Federation for the Surgery of Obesity and Metabolic disorders–Asia Pacific Chapter (IFSO-APC) meeting 2013 in Taiwan. This work was supported in part by the Soonchunhyang University Research Fund. Authors appreciate sincerely Su Yoon Go (Suzanne Burrows) for her help to revise this manuscript.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Yul Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Hur, K.Y. Short-Term Outcomes of Laparoscopic Single Anastomosis Gastric Bypass (LSAGB) for the Treatment of Type 2 Diabetes in Lower BMI (<30 kg/m2) Patients. OBES SURG 24, 1044–1051 (2014). https://doi.org/10.1007/s11695-014-1202-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1202-5

Keywords

Navigation