Skip to main content
Log in

Differential Changes in Exercise Performance After Massive Weight Loss Induced by Bariatric Surgery

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2012

Abstract

Background

Exercise performance and pulmonary function are often impaired in severely obese subjects. Bariatric surgery represents the most effective therapy for severe obesity, but data on changes in exercise performance after massive weight loss induced by bariatric surgery have rarely been assessed so far.

Methods

Exercise performance was obtained by bicycle spiroergometry in 18 severely obese patients before and at least 1 year after bariatric surgery. Additionally, pulmonary function was assessed by spirometry.

Results

BMI was reduced from 46.3 ± 1.6 to 33.5 ± 1.4 kg/m2 after surgery. Pulmonary function (forced expiratory volume within 1 s; inspiratory vital capacity) improved after weight loss (both p ≤ 0.01). At peak exercise, heart rate (HR) peak, absolute oxygen uptake (VO2) peak, and load peak did not differ between both assessments (all p > 0.25). However, relative (related to actual body weight) VO2 peak and workload peak were higher after than before surgery (both p ≤ 0.005), while gross efficiency peak and ventilatory equivalent peak remained unchanged (both p > 0.30). At anaerobic threshold (AT), patients showed lower HR AT and absolute VO2 AT after than before surgery (both p < 0.05), while absolute workload AT did not differ (p = 0.58). In turn, relative VO2 AT did not change (p = 0.30), whereas relative workload AT was higher after surgery (p = 0.04). Also, ventilatory efficiency AT and gross efficiency AT tended to be improved (both p = 0.08). Before surgery, the patients performed 27.0 % of VO2 peak above their AT, while this fraction increased to 35.3 % (p = 0.006).

Conclusions

Results indicated differential changes in exercise performance, with the relative but not the absolute peak performance being improved after massive weight loss. Interestingly, anaerobic exercise tolerance was markedly improved after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295:1549–55.

    Article  PubMed  CAS  Google Scholar 

  2. Sturm R. Increases in morbid obesity in the USA: 2000–2005. Public Health. 2007;121:492–6.

    Article  PubMed  CAS  Google Scholar 

  3. Flegal KM, Graubard BI, Williamson DF, et al. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298:2028–37.

    Article  PubMed  CAS  Google Scholar 

  4. Buchwald H. Consensus Conference Panel. Consensus conference statement bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. Surg Obes Relat Dis. 2005;1:371–81.

    Article  PubMed  Google Scholar 

  5. Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the U.S.: 1990–1998. Diabetes Care. 2000;23:1278–83.

    Article  PubMed  CAS  Google Scholar 

  6. Hulens M, Vansant G, Lysens R, et al. Exercise capacity in lean versus obese women. Scand J Med Sci Sports. 2001;11:305–9.

    Article  PubMed  CAS  Google Scholar 

  7. Murugan AT, Sharma G. Obesity and respiratory diseases. Chron Respir Dis. 2008;5:233–42.

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Rennie D, Cormier YF, et al. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am J Clin Nutr. 2007;85:35–9.

    PubMed  CAS  Google Scholar 

  9. Sabia S, Shipley M, Elbaz A, et al. Why does lung function predict mortality? Results from the Whitehall II Cohort Study. Am J Epidemiol. 2010;15:1415–23.

    Article  Google Scholar 

  10. Schünemann HJ, Dorn J, Grant BJ, et al. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest. 2000;118:656–64.

    Article  PubMed  Google Scholar 

  11. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.

    Article  PubMed  CAS  Google Scholar 

  12. Lee HM, Chung SJ, Lopez VA, et al. Association of FVC and total mortality in US adults with metabolic syndrome and diabetes. CHEST. 2009;136:171–6.

    Article  PubMed  Google Scholar 

  13. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19:1605–11.

    Article  PubMed  Google Scholar 

  14. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  15. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    Article  PubMed  CAS  Google Scholar 

  16. Sjöström L, Narbro K, Sjöström CD, et al. Effects of baratric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  17. Sjöström L, Lindroos A-K, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  18. De Souza SAF, Faintuch J, Sant'Anna AF. Effect of weight loss on aerobic capacity in patients with severe obesity before and after bariatric surgery. Obes Surg. 2010;20:871–75.

    Article  PubMed  Google Scholar 

  19. Serés L, Lopez-Ayerbe J, Coll R, et al. Increased exercise capacity after surgically induced weight loss in morbid obesity. Obesity. 2006;14:273–9.

    Article  PubMed  Google Scholar 

  20. Noordhof DA, de Koning JJ, van Erp T, et al. The between and within day variation in gross efficiency. Eur J Appl Physiol. 2010;109:1209–18.

    Article  PubMed  Google Scholar 

  21. Fried M, Hainer V, Basdevant A, et al. Interdisciplinary European guidelines on surgery of severe obesity. Obes Facts. 2008;1:52–9.

    Article  PubMed  Google Scholar 

  22. Haber P. Österreichische Referenzwerte für die Spirometrie. In: Haber M, ed. Lungenfunktion und Spirometrie. Interpretation und Befunderstellung. Wien: Springer 2004: 183–184.

  23. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Normal values. In: Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ, editors. Principles of exercise testing and interpretation. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 160–82.

    Google Scholar 

  24. Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129:443–4.

    PubMed  CAS  Google Scholar 

  25. McClean KM, Kee F, Young IS, et al. Obesity and the lung. 1 Epidemiology. Thorax. 2008;63:649–54.

    Article  PubMed  CAS  Google Scholar 

  26. Tamboli RA, Hossain HA, Marks PA, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity. 2010;18:1718–24.

    Article  PubMed  CAS  Google Scholar 

  27. Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16:1602–8.

    Article  PubMed  Google Scholar 

  28. Das SK, Roberts SB, Kehayias JJ, et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003;284:E1080–8.

    PubMed  CAS  Google Scholar 

  29. de Aquino LA, Pereira SE, de Souza Silva J, et al. Bariatric surgery: impact on body composition after Roux-en-Y gastric bypass. Obes Surg. 2012;22:195–200.

    Article  PubMed  Google Scholar 

  30. Wagner PD. Limiting factors of exercise performance. Deutsche Zeitschrift für Sportmedizin. 2010;61:108–11.

    Google Scholar 

  31. Holloway GP, Thrush AB, Heigenhauser GJ, et al. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab. 2007;292:E1782–9.

    Article  PubMed  CAS  Google Scholar 

  32. Larsen S, Stride N, Hey-Mogensen M, et al. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes. Diabetologia. 2011;54:1427–36.

    Article  PubMed  CAS  Google Scholar 

  33. Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

    Article  PubMed  CAS  Google Scholar 

  34. Phielix E, Meex R, Moonen-Kornips E, et al. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia. 2010;53:1714–21.

    Article  PubMed  CAS  Google Scholar 

  35. Bajpeyi S, Tanner CJ, Slentz CA, et al. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol. 2009;106:1079–85.

    Article  PubMed  CAS  Google Scholar 

  36. Dubé JJ, Amati F, Toledo FGS, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54:1147–56.

    Article  PubMed  Google Scholar 

  37. Chen KY, Acra SA, Donahue CL, et al. Efficiency of walking and stepping: relationship to body fatness. Obes Res. 2004;12:982–9.

    Article  PubMed  Google Scholar 

  38. Lafortuna CL, Proietti M, Agosti F, et al. The energy cost of cycling in young obese women. Eur J Appl Physiol. 2006;97:16–25.

    Article  PubMed  Google Scholar 

  39. Stegen S, Derave W, Calders P, et al. Physical fitness in morbidly obese patients: effect of gastric bypass surgery and exercise training. Obes Surg. 2011;21:61–70.

    Article  PubMed  Google Scholar 

  40. Toledo FGS, Menshikova EV, Azuma K, et al. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes. 2008;57:987–94.

    Article  PubMed  CAS  Google Scholar 

  41. Menshikova EV, Ritov VB, Toledo FGS, et al. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab. 2004;288:E818–25.

    Article  PubMed  Google Scholar 

  42. Kroidl RF, Latsch J, Lehnigk B, Schwarz S, Spindler M. O2-Aufnahme und Belastungs-Protokolle. In: Kroidl RF, Schwarz S, Lehnigk B, editors. Kursbuch Spiroergometrie. Technik und Befundung verständlich gemacht. Stuttgart: Georg Thieme Verlag; 2007. p. 51–9.

    Google Scholar 

Download references

Conflict of Interest

No conflicts of interest were declared by any of the authors (BWI, BE, MT, BWE, and BS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schultes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilms, B., Ernst, B., Thurnheer, M. et al. Differential Changes in Exercise Performance After Massive Weight Loss Induced by Bariatric Surgery. OBES SURG 23, 365–371 (2013). https://doi.org/10.1007/s11695-012-0795-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0795-9

Keywords

Navigation