Skip to main content
Log in

Non-destructive classification of melon sweetness levels using segmented rind properties based on semantic segmentation models

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Melon is one of the most consumed crops worldwide and has high marketability. Consumers prefer sweet melons. However, the nondestructive determination of melon sweetness is challenging because of its thick rind. In this study, we presented a novel approach for predicting melon sweetness levels using features extracted from segmented rind images and machine learning techniques. We extracted various features from melon rinds images, such as the net density, net thickness, and rind color, using a semantic segmentation model. These features were used as factors in grading melon quality. Experiments on various machine learning models showed that the one-dimensional convolutional neural network model achieved the best performance with 85.71% accuracy, 96.00% precision, and 87.27% F-score. Moreover, It indicated that the sweetness classification performance over a binary class (combining sweet and ‘very sweet’ classes into one class) achieved better result than over multiple classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The melon dataset utilized in this research is accessible and available for download via the following link: https://github.com/codaibk/MelonDataset.

References

  1. W.J. Ripple, C. Wolf, J.W. Gregg, K. Levin, J. Rockström, T.M. Newsome, M.G. Betts, S. Huq, B.E. Law, L. Kemp et al., World scientists’ warning of a climate emergency 2022. BioScience 72(12), 1149–1155 (2022). https://doi.org/10.1093/biosci/biac083

    Article  Google Scholar 

  2. K.O. Yoro, M.O. Daramola, Co\(_{2}\) emission sources, greenhouse gases, and the global warming effect. In: Advances in Carbon Capture, pp. 3–28. Woodhead Publishing, Duxford (2020)

  3. M.S. Eftekhari, Impacts of climate change on agriculture and horticulture. In: Climate Change: The Social and Scientific Construct, pp. 117–131. Springer, Cham (2022)

  4. P. Brenton, V. Chemutai, M. Pangestu, Trade and food security in a climate change-impacted world. Agric. Econ. 53(4), 580–591 (2022)

    Article  Google Scholar 

  5. M.N. Islam, S. Tamanna, M. Noman, A.R. Siemens, S.R. Islam, M.S. Islam, Climate change diplomacy, adaptation, and mitigation strategies in south Asian countries: a critical review. In: India II: Climate Change Impacts, Mitigation and Adaptation in Developing Countries, pp. 1–32. Springer, Cham (2022)

  6. A.U. Din, H. Han, A. Ariza-Montes, A. Vega-Muñoz, A. Raposo, S. Mohapatra, The impact of covid-19 on the food supply chain and the role of e-commerce for food purchasing. Sustainability 14(5), 3074 (2022)

    Article  CAS  Google Scholar 

  7. M. Koppenberg, M. Bozzola, T. Dalhaus, S. Hirsch, Mapping potential implications of temporary covid-19 export bans for the food supply in importing countries using precrisis trade flows. Agribusiness 37(1), 25–43 (2021)

    Article  Google Scholar 

  8. M.O. Alabi, O. Ngwenyama, Food security and disruptions of the global food supply chains during covid-19: building smarter food supply chains for post covid-19 era. Br. Food J. 125(1), 167–185 (2023)

    Article  Google Scholar 

  9. A.M. Herrero, Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem. 107(4), 1642–1651 (2008)

    Article  CAS  Google Scholar 

  10. S.V. Menon, T.R. Rao, Health-promoting components and related enzyme activities of muskmelon fruit during its development and ripening. J. Food Biochem. 38(4), 415–423 (2014)

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Huang, J. Su et al., Breeding for Disease Resistance of Melon in Taiwan, p. 51. The World Vegetable Center, Shanhua (2013)

  12. J.-C. Peng, S.-D. Yeh, L.-H. Huang, J.-T. Li, Y.-F. Cheng, T.-C. Chen, Emerging threat of thrips-borne melon yellow spot virus on melon and watermelon in Taiwan. Eur. J. Plant Pathol. 130, 205–214 (2011). https://doi.org/10.1007/s10658-011-9746-x

    Article  Google Scholar 

  13. M. Sun, D. Zhang, L. Liu, Z. Wang, How to predict the sugariness and hardness of melons: a near-infrared hyperspectral imaging method. Food Chem. 218, 413–421 (2017). https://doi.org/10.1016/j.foodchem.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  14. T.C. Wehner, Watermelon. In: Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae, pp. 381–418. Springer, New York (2008)

  15. A. Zeb, W.S. Qureshi, A. Ghafoor, A. Malik, M. Imran, J. Iqbal, E. Alanazi, Is this melon sweet? A quantitative classification for near-infrared spectroscopy. Infrared Phys. Technol. 114, 103645 (2021). https://doi.org/10.1016/j.infrared.2021.103645

    Article  CAS  Google Scholar 

  16. J. Guthrie, C. Liebenberg, K.B. Walsh, NIR model development and robustness in prediction of melon fruit total soluble solids. Aust. J. Agric. Res. 57(4), 411–418 (2006)

    Article  Google Scholar 

  17. I.S. Andrade, C.A.F. Melo, G.H. Sousa Nunes, I.S.A. Holanda, L.C. Grangeiro, R.X. Corrêa, Phenotypic variability, diversity and genetic-population structure in melon (Cucumis melo L.) associated with total soluble solids. Sci. Hortic. 278, 109844 (2021). https://doi.org/10.1016/j.scienta.2020.109844

  18. S. Manchali, K.N. Chidambara Murthy, B.S. Patil, Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants 10(9), 1755 (2021)

  19. F. Soltani, M. Shajari, G.S. Mirbehbahani, M.R. Bihamta, Assessment of melon genetic diversity based on fruit phenotypic traits and flowering habits. Int. J. Hortic. Sci. Technol. 9(1), 97–116 (2022)

    Google Scholar 

  20. H. Chikh-Rouhou, I. Tlili, R. Ilahy, T. R’him, R. Sta-Baba, Fruit quality assessment and characterization of melon genotypes. Int. J. Veg. Sci. 27(1), 3–19 (2021)

  21. F.A. Miller, J.F. Fundo, E. Garcia, C.L. Silva, T.R. Brandão, Effect of gaseous ozone process on cantaloupe melon peel: assessment of quality and antilisterial indicators. Foods 10(4), 727 (2021)

  22. Y. Shao, K. Wang, G. Xuan, C. Gao, Z. Hu, Soluble solids content monitoring for shelf-life assessment of table grapes coated with chitosan using hyperspectral imaging. Infrared Phys. Technol. 115, 103725 (2021). https://doi.org/10.1016/j.infrared.2021.103725

    Article  CAS  Google Scholar 

  23. Q. Gao, P. Wang, T. Niu, D. He, M. Wang, H. Yang, X. Zhao, Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging. Food Chem. 370, 131013 (2022). https://doi.org/10.1016/j.foodchem.2021.131013

    Article  CAS  PubMed  Google Scholar 

  24. E. Arendse, O.A. Fawole, L.S. Magwaza, U.L. Opara, Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review. J. Food Eng. 217, 11–23 (2018). https://doi.org/10.1016/j.jfoodeng.2017.08.009

    Article  Google Scholar 

  25. S. Srivastava, S. Sadistap, Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: a review. J. Food Meas. Charact. 12(4), 2758–2794 (2018)

    Article  Google Scholar 

  26. J. Sun, B. Ma, J. Dong, R. Zhu, R. Zhang, W. Jiang, Detection of internal qualities of Hami melons using hyperspectral imaging technology based on variable selection algorithms. J. Food Process Eng. 40(3), 12496 (2017)

    Article  Google Scholar 

  27. S.-R. Suh, K.-H. Lee, S.-H. Yu, H.-S. Shin, Y.-S. Choi, S.-N. Yoo, A melon fruit grading machine using a miniature VIS/NIR spectrometer: 1. Calibration models for the prediction of soluble solids content and firmness. Biosyst. Eng. 37(3), 166–176 (2012)

    Article  Google Scholar 

  28. M. Li, D. Han, W. Liu, Non-destructive measurement of soluble solids content of three melon cultivars using portable visible/near infrared spectroscopy. Biosyst. Eng. 188, 31–39 (2019). https://doi.org/10.1016/j.biosystemseng.2019.10.003

    Article  Google Scholar 

  29. D. Zhang, L. Xu, Q. Wang, X. Tian, J. Li, The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by vis-nir spectroscopy. Food Anal. Methods 12, 136–147 (2019). https://doi.org/10.1007/s12161-018-1346-3

    Article  Google Scholar 

  30. S.O. Nelson, S. Trabelsi, S.J. Kays, Dielectric spectroscopy of honeydew melons from 10 MHz to 1.8 GHz for quality sensing. Trans. ASABE 49(6), 1977–1981 (2006)

    Article  Google Scholar 

  31. D. Liu, E. Wang, G. Wang, P. Wang, C. Wang, Z. Wang, Non-destructive sugar content assessment of multiple cultivars of melons by dielectric properties. J. Sci. Food Agric. 101(10), 4308–4314 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. M. Taniwaki, M. Tohro, N. Sakurai, Measurement of ripening speed and determination of the optimum ripeness of melons by a nondestructive acoustic vibration method. Postharvest. Biol. Technol. 56(1), 101–103 (2010)

    Article  Google Scholar 

  33. F. Khoshnam, M. Namjoo, H. Golbakhshi, Acoustic testing for melon fruit ripeness evaluation during different stages of ripening. Agric. Conspec. Sci. 80(4), 197–204 (2015)

    Google Scholar 

  34. N. Gerchikov, A. Keren-Keiserman, R. Perl-Treves, I. Ginzberg, Wounding of melon fruits as a model system to study rind netting. Sci. Hortic. 117(2), 115–122 (2008)

    Article  Google Scholar 

  35. A. Keren-Keiserman, Z. Tanami, O. Shoseyov, I. Ginzberg, Rind characteristics associated with melon (Cucumis melo) netting; comparative study with smoothed-rind varieties. J. Hortic. Sci. Biotechnol. 79, 107–113 (2004). https://doi.org/10.1080/14620316.2004.11511721

    Article  Google Scholar 

  36. K.-L. Hua, T.-T. Ho, K.-A. Jangtjik, Y.-J. Chen, M.-C. Yeh, Artist-based painting classification using Markov random fields with convolution neural network. Multimed. Tools Appl. 79, 12635–12658 (2020). https://doi.org/10.1007/s11042-019-08547-4

    Article  Google Scholar 

  37. A. Sellami, S. Tabbone, Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognit. 121, 108224 (2022). https://doi.org/10.1016/j.patcog.2021.108224

    Article  Google Scholar 

  38. H. Patel, K.P. Upla, A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-021-11422-w

    Article  Google Scholar 

  39. J.Z. Bengar, J. Weijer, L.L. Fuentes, B. Raducanu, Class-balanced active learning for image classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1536–1545. IEEE Computer Society, Washington DC (2022)

  40. Z. Zhang, X. Lu, G. Cao, Y. Yang, L. Jiao, F. Liu, ViT-YOLO: transformer-based YOLO for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2799–2808. IEEE, Washington (2021)

  41. D. Pestana, P.R. Miranda, J.D. Lopes, R.P. Duarte, M.P. Véstias, H.C. Neto, J.T. De Sousa, A full featured configurable accelerator for object detection with yolo. IEEE Access 9, 75864–75877 (2021). https://doi.org/10.1109/ACCESS.2021.3081818

  42. M.O. Lawal, Tomato detection based on modified YOLOv3 framework. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  43. X. Han, J. Chang, K. Wang, Real-time object detection based on YOLO-v2 for tiny vehicle object. Procedia Comput. Sci. 183, 61–72 (2021). https://doi.org/10.1016/j.procs.2021.02.031

  44. T.-T. Ho, J.J. Virtusio, Y.-Y. Chen, C.-M. Hsu, K.-L. Hua, Sketch-guided deep portrait generation. ACM Trans. Multimedia Comput. Commun. Appl. 16(3), 1–18 (2020)

    Article  Google Scholar 

  45. Z. Wu, D. Lischinski, E. Shechtman, Stylespace analysis: Disentangled controls for StyleGAN image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12863–12872 (2021)

  46. G. Kwon, J.C. Ye, Diagonal attention and style-based GAN for content-style disentanglement in image generation and translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13980–13989 (2021)

  47. C. Wang, P. Du, H. Wu, J. Li, C. Zhao, H. Zhu, A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net. Comput. Electron. Agric. 189, 106373 (2021). https://doi.org/10.1016/j.compag.2021.106373

    Article  Google Scholar 

  48. F. Isensee, P.F. Jaeger, S.A. Kohl, J. Petersen, K.H. Maier-Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. S.L. Ullo, A. Mohan, A. Sebastianelli, S.E. Ahamed, B. Kumar, R. Dwivedi, G.R. Sinha, A new mask R-CNN-based method for improved landslide detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 3799–3810 (2021). https://doi.org/10.1109/JSTARS.2021.3064981

  50. P. Chu, Z. Li, K. Lammers, R. Lu, X. Liu, Deep learning-based apple detection using a suppression mask R-CNN. Pattern Recognit. Lett. 147, 206–211 (2021). https://doi.org/10.1016/j.patrec.2021.04.022

    Article  Google Scholar 

  51. Z. Chen, C. Wang, J. Li, N. Xie, Y. Han, J. Du, Reconstruction bias U-Net for road extraction from optical remote sensing images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 2284–2294 (2021). https://doi.org/10.1109/JSTARS.2021.3053603

  52. A.O. Vuola, S.U. Akram, J. Kannala, Mask-RCNN and U-Net ensembled for nuclei segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 208–212. IEEE, Washington DC (2019)

  53. F. Long, Microscopy cell nuclei segmentation with enhanced U-Net. BMC Bioinform. 21, 1–12 (2020). https://doi.org/10.1186/s12859-019-3332-1

    Article  CAS  Google Scholar 

  54. I.R.I. Haque, J. Neubert, Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020)

    Article  Google Scholar 

  55. W. Weng, X. Zhu, INET: convolutional networks for biomedical image segmentation. IEEE Access 9, 16591–16603 (2021). https://doi.org/10.1109/ACCESS.2021.3053408

    Article  Google Scholar 

  56. Q. Li, W. Jia, M. Sun, S. Hou, Y. Zheng, A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment. Comput. Electron. Agric 180, 105900 (2021). https://doi.org/10.1016/j.compag.2020.105900

    Article  Google Scholar 

  57. K. Roy, S.S. Chaudhuri, S. Pramanik, Deep learning based real-time industrial framework for rotten and fresh fruit detection using semantic segmentation. Microsyst. Technol. 27, 3365–3375 (2021). https://doi.org/10.1007/s00542-020-05123-x

    Article  Google Scholar 

  58. T. Looverbosch, E. Raeymaekers, P. Verboven, J. Sijbers, B. Nicolai, Non-destructive internal disorder detection of conference pears by semantic segmentation of X-ray CT scans using deep learning. Expert Syst. Appl. 176, 114925 (2021). https://doi.org/10.1016/j.eswa.2021.114925

    Article  Google Scholar 

  59. Z. Group, APEER: an intuitive annotation tool for deep learning needs. Software (2022). https://www.apeer.com/app. https://www.apeer.com/annotate. Accessed 16 Feb 2022

  60. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

  61. V. Badrinarayanan, A. Kendall, R. Cipolla, SEGNET: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  PubMed  Google Scholar 

  62. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

  63. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, pp. 234–241. Springer, Berlin (2015)

  64. S. Orhan, Y. Bastanlar, Semantic segmentation of outdoor panoramic images. Signal Image Video Process. 16(3), 643–650 (2022)

    Article  Google Scholar 

  65. M. Fawakherji, A. Youssef, D. Bloisi, A. Pretto, D. Nardi, Crop and weeds classification for precision agriculture using context-independent pixel-wise segmentation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 146–152. IEEE, Washington DC (2019)

  66. A. Ahmadi, M. Halstead, C. McCool, Virtual temporal samples for recurrent neural networks: applied to semantic segmentation in agriculture. In: Pattern Recognition: 43rd DAGM German Conference, DAGM GCPR 2021, Bonn, Germany, September 28–October 1, 2021, Proceedings, pp. 574–588. Springer, Berlin (2022)

  67. N.J. Singh, K. Nongmeikapam, Semantic segmentation of satellite images using deep-UNet. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06734-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. A. Rosenfeld, J.L. Pfaltz, Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    Article  Google Scholar 

  69. Y. Wang, X. Wei, F. Liu, J. Chen, Y. Zhou, W. Shen, E.K. Fishman, A.L. Yuille, Deep distance transform for tubular structure segmentation in ct scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3833–3842 (2020)

  70. N. Homayounfar, W.-C. Ma, J. Liang, X. Wu, J. Fan, R. Urtasun, Dagmapper: learning to map by discovering lane topology. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2911–2920 (2019)

  71. J. Choi, H. Park, J.-I. Park, Hand shape recognition using distance transform and shape decomposition. In: 2011 18th IEEE International Conference on Image Processing, pp. 3605–3608. IEEE, Washington DC (2011)

  72. L.C. Ribas, M.B. Neiva, O.M. Bruno, Distance transform network for shape analysis. Inf. Sci. 470, 28–42 (2019). https://doi.org/10.1016/j.ins.2018.08.038

    Article  Google Scholar 

  73. X.-Y. Zhang, C.-L. Liu, C.Y. Suen, Towards robust pattern recognition: a review. Proc. IEEE 108(6), 894–922 (2020)

    Article  Google Scholar 

  74. S.S.A. Shah, A. Zeb, W.S. Qureshi, M. Arslan, A.U. Malik, W. Alasmary, E. Alanazi, Towards fruit maturity estimation using NIR spectroscopy. Phys. Technol. 111, 103479 (2020). https://doi.org/10.1016/j.infrared.2020.103479

    Article  CAS  Google Scholar 

  75. S.-C. Wang, Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Boston (2003)

  76. T.-T. Ho, Y. Huang, Stock price movement prediction using sentiment analysis and candlestick chart representation. Sensors 21(23), 7957 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  77. K.K. Lella, A. Pja, Automatic covid-19 disease diagnosis using 1d convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice. AIMS Public Health 8(2), 240 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  78. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015). https://doi.org/10.48550/arXiv.1412.6980

  79. F. Chollet et al., Keras (2021). https://keras.io. Accessed 10 Feb 2021

  80. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software (2021). https://www.tensorflow.org/. Accessed 10 Feb 2021

Download references

Acknowledgements

The work was supported by National Science and Technology Council of the Republic of China under grant NSTC 112-2222-E-032-001. The work was also supported by Academia Sinica under grant AS-TP-110-M07. Furthermore, we would like to express our appreciation to Known-You Seed Co. for providing the melon dataset used in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trang-Thi Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, TT., Hoang, T., Tran, KD. et al. Non-destructive classification of melon sweetness levels using segmented rind properties based on semantic segmentation models. Food Measure 17, 5913–5928 (2023). https://doi.org/10.1007/s11694-023-02092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02092-3

Keywords

Navigation