Skip to main content

Freshness Quality Detection of Tomatoes Using Computer Vision

  • Conference paper
  • First Online:
Artificial Intelligence (ISAI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1695))

Included in the following conference series:

  • 535 Accesses

Abstract

Grading and classification of fruits and vegetables has a major role in storage and supply chain. Manual grading is difficult and time-consuming. Therefore, this study employs computer vision (CV) and machine learning algorithms to detect the freshness quality of tomatoes during storage. The freshness quality is classified into 10 grades, where grade 1 is fresh and grade 10 denotes rotten. Image prepossessing and handcrafted feature extraction combined with a shallow artificial neural network (ANN) is employed for the task. Results from the proposed ANN outperform several state-of-the-art methods, including imaging-based deep neural networks. We construct a large volume dataset containing –70 days, day-by-day degradation for the task. We hope that the dataset will attract researchers and add a valuable contribution to the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antle, J.M., Ray, S.: Sustainable Agricultural Development. PSAEFP, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34599-0

    Book  Google Scholar 

  2. Longsheng, F., Gao, F., Jingzhu, W., Li, R., Karkee, M., Zhang, Q.: Application of consumer rgb-d cameras for fruit detection and localization in field: a critical review. Comput. Electron. Agricul. 177, 105687 (2020)

    Google Scholar 

  3. Ucat, R.C., Cruz, R.C.D.: Postharvest grading classification of cavendish banana using deep learning and tensorflow. In: 2019 International Symposium on Multimedia and Communication Technology (ISMAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  4. Zilong, H., Tang, J., Zhang, P., Jiang, J.: Deep learning for the identification of bruised apples by fusing 3D deep features for apple grading systems. Mech. Syst. Sign. Process. 145, 106922 (2020)

    Google Scholar 

  5. Bhargava, A., Bansal, A.: Fruits and vegetables quality evaluation using computer vision: a review. J. King Saud Univ.-Comput. Inf. Sci. 33(3), 243–257 (2018)

    Google Scholar 

  6. Saha, R., Neware, S.: Orange fruit disease classification using deep learning approach. Int. J.,9(2) (2020)

    Google Scholar 

  7. Capizzi, G., Sciuto, G.L., Napoli, C., Tramontana, E., Wozniak, M.: Automatic classification of fruit defects based on co-occurrence matrix and neural networks. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 861–867. IEEE (2015)

    Google Scholar 

  8. Prince, R., et al.: Identification of quality index of fruit/vegetable using image processing. Int. J. Adv. Res. Ideas. Inno. Tech. 4, 1–6 (2018)

    Google Scholar 

  9. Hossain, M.S., Al-Hammadi, M., Muhammad, G.: Automatic fruit classification using deep learning for industrial applications. IEEE Trans. Ind. Inform. 15(2), 1027–1034 (2018)

    Google Scholar 

  10. Kaur, M., Sharma, R.: Quality detection of fruits by using ANN technique. IOSR J. Electron. Commun. Eng. Ver. II 10(4), 2278–2834 (2015)

    Google Scholar 

  11. Maksimenko, V.A., et al.: Artificial neural network classification of motor-related EEG: an increase in classification accuracy by reducing signal complexity. Complexity (2018)

    Google Scholar 

  12. Shijin Kumar, P.S., Dharun, V.S.: Extraction of texture features using GLCM and shape features using connected regions. Int. J. Eng. Technol. 8(6), 2926–2230 (2016)

    Google Scholar 

  13. Liu, L., Li, Z., Lan, Y., Shi, Y., Cui, Y.: Design of a tomato classifier based on machine vision. PloS one 14(7), e0219803 (2019)

    Google Scholar 

  14. Opeña, H.J.G., Yusiong, J.P.T.: Automated tomato maturity grading using ABC-trained artificial neural networks. Malays. J. Comput. Sci. 30(1), 12–26 (2017)

    Google Scholar 

  15. de Luna, R.G., Dadios, E.P., Bandala, A.A., Vicerra, R.R.P.: Size classification of tomato fruit using thresholding, machine learning, and deep learning techniques. AGRIVITA J. Agri. Sci. 41(3) (2019)

    Google Scholar 

  16. Semary, N.A., Tharwat, A., Elhariri, E., Hassanien, A.E.: Fruit-based tomato grading system using features fusion and support vector machine. In: Filev, D., et al. Intelligent Systems 2014. Advances in Intelligent Systems and Computing, vol. 323, pp. 401–410. Springer, Cham (2015)

    Google Scholar 

  17. Wan, P., Toudeshki, A., Tan, H., Ehsani, R.: A methodology for fresh tomato maturity detection using computer vision. Comput. Electr. Agri. 146, 43–50 (2018)

    Article  Google Scholar 

  18. Buades, A., Coll, B., Morel, J.-M.: Non-local means denoising. Image Process. Line 1, 208–212 (2011)

    Article  MATH  Google Scholar 

  19. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  20. Baozhong, L., Jianbin, L.: Overview of image noise reduction based on non-local mean algorithm. In: MATEC Web of Conferences, vol 232, p. 03029. EDP Sciences (2018)

    Google Scholar 

  21. Haralick, R.M., Shanmugam, K., Dinstein, H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Google Scholar 

  22. Griffin, L.D.: Mean, median and mode filtering of images. In: Proc. R. Soc. London Ser. Math. Phys. Eng. Sci. 456(2004), 2995–3004 (2000)

    Google Scholar 

  23. Kumar, V., Gupta, P.: Importance of statistical measures in digital image processing. Int. J. Emerg. Technol. Adv. Eng. 2(8), 56–62 (2012)

    Google Scholar 

  24. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recogn. 70, 25–43 (2017)

    Article  Google Scholar 

  25. Chao, C.F., Horng, M.H.: The construction of support vector machine classifier using the firefly algorithm. Comput. Intell. Neurosci. (2015)

    Google Scholar 

  26. Denil, M., Matheson, D., De Freitas, N.: Narrowing the gap: random forests in theory and in practice. In: International Conference on Machine Learning, pp. 665–673 (2014)

    Google Scholar 

  27. Indriani, O.R., Kusuma, E.J., Sari, C.A., Rachmawanto, E.H., et al.: Tomatoes classification using k-nn based on GLCM and HSV color space. In: 2017 international conference on innovative and creative information technology (ICITech), pp. 1–6. IEEE (2017)

    Google Scholar 

  28. Mureşan, H., Oltean, M.: Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica 10(1), 26–42 (2018)

    Article  Google Scholar 

  29. Nishi, T., Kurogi, S., Matsuo, K.: Grading fruits and vegetables using RGB-d images and convolutional neural network. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)

    Google Scholar 

  30. Zeng, G.: Fruit and vegetables classification system using image saliency and convolutional neural network. In 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 613–617. IEEE (2017)

    Google Scholar 

  31. Yasrab, R.: Ecru: an encoder-decoder based convolution neural network (cnn) for road-scene understanding. J. Imaging 4(10), 116 (2018)

    Article  Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  34. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikha Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Mondal, P., Quraishi, M.I., Kar, S., Sekh, A.A. (2022). Freshness Quality Detection of Tomatoes Using Computer Vision. In: Sk, A.A., Turki, T., Ghosh, T.K., Joardar, S., Barman, S. (eds) Artificial Intelligence. ISAI 2022. Communications in Computer and Information Science, vol 1695. Springer, Cham. https://doi.org/10.1007/978-3-031-22485-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22485-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22484-3

  • Online ISBN: 978-3-031-22485-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics