Skip to main content

Advertisement

Log in

Potential perspectives of CMC-PET/ZnO bilayer nanocomposite films for food packaging applications: physical, mechanical and antimicrobial properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, CMC-PET bilayer nanocomposites films containing different levels of zinc oxide nanoparticles (ZnO NPs; 0%, 1%, 2%, 3%, 4%) were prepared and characterized. The water vapor permeability, color, mechanical, microbial and structural properties of the films were analyzed. The FESEM images indicated some fragmental and smooth surfaces on the pure CMC-PET films, while a rough fragment surface was seen for the ZnO NPs/CMC-PET nanocomposite films. Along with increasing the ZnO NPs percentage, the water vapor permeability of CMC-PET films decreased compared to the pure film. Increasing the nanoparticles percentage had a positive impact on the tensile strength and increased this factor from 123.77 to 466.80 MPa, while the elongation at break decreased from 48.38 to 10.59% and the nanocomposite films were revealed more resistant compared to the pure CMC-PET film, which facilitates the transport and storing of the foodstuffs. In addition, the incorporation of zinc oxide NPs decreased a* and b* values, whereas it increased L* and ∆E. The presence of ZnO NPs in CMC-PET films exhibited antimicrobial activity against Escherichia coli and Staphylococcus aureus compared to the film samples without any NPs. In general, this research verifies improvement in physical, mechanical and microbial characteristics of CMC-PET nanocomposite films along with the ZnO NPs increase from 1 to 4% of matrices. Moreover, these films exhibit a high versatility in food packaging as well as having antimicrobial properties, and can extend the shelf-life of packaged foods as active packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Petrou, M. Tsiraki, V. Giatrakou, I. Savvaidis, Int. J. Food Microbiol. 156(3), 264–271 (2012)

    Article  CAS  Google Scholar 

  2. H. Salmanian, F. Khodaiyan, S.S. Hosseini, J. Food Bioprocess. Eng. 2(2), 101–106 (2019)

    Google Scholar 

  3. S. Jafari, M. Hojjati, M. Noshad, J. Food. Process. Preserv. 42(6), e13638 (2018)

    Article  Google Scholar 

  4. S. Paunonen, Bioresour. Res. 8(2), 3098–3121 (2013)

    Google Scholar 

  5. P. Appendini, J.H. Hotchkiss, Innov. Food Sci. Emerg. Technol. 3(2), 113–126 (2002)

    Article  CAS  Google Scholar 

  6. M. Mutsuga, T. Tojima, Y. Kawamura, K. Tanamoto, Food Addit. Contam. 22(8), 783–789 (2005)

    Article  CAS  Google Scholar 

  7. F. Welle, F. Bayer, R. Franz, Packag. Technol. Sci. 25(6), 341–349 (2012)

    Article  CAS  Google Scholar 

  8. T. Heinze, A. Koschella, Carboxymethyl ethers of cellulose and starch—a review. in Macromo Symposia. Wiley Online Library (2005)

  9. A.L. Brody, E. Strupinsky, L.R. Kline, Active Packaging for Food Applications (CRC Press, Boca Raton, 2001).

    Book  Google Scholar 

  10. A. Emamifar, M. Kadivar, M. Shahedi, S. Soleimanian-Zad, Innov. Food Sci. Emerg. Technol. 11(4), 742–748 (2010)

    Article  CAS  Google Scholar 

  11. A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich, A. Fernandez, Trends Food Sci. Technol. 24(1), 19–29 (2012)

    Article  CAS  Google Scholar 

  12. B. Ghanbarzadeh, S. Saianjali, S. Ghiyasifar, J. Food Sci. Technol. 32(8), 43–50 (2011)

    Google Scholar 

  13. Z. Honarvar, M. Farhoodi, M.R. Khani, A. Mohammadi, B. Shokri, R. Ferdowsi, S. Shojaee-Aliabadi, Carbohydr. Polym. 176, 1–10 (2017)

    Article  CAS  Google Scholar 

  14. Y.A. Arfat, S. Benjakul, T. Prodpran, P. Sumpavapol, P. Songtipya, Food Hydrocoll. 41, 265–273 (2014)

    Article  CAS  Google Scholar 

  15. ASTM, Standard test method for water vapor transmison of materials (ASTM, Philadelphia, 2016)

  16. I. Echeverría, P. Eisenberg, A.N. Mauri, J. Membrane Sci. 449, 15–26 (2014)

    Article  Google Scholar 

  17. ASTM, Srtandard test method for tensile prperties of thin plastic sheeting. (ASTM standard, Philadelphia, 2018)

  18. F.S. Jebel,Almasi, H., Carbohydr. Polym. 149, 8–19 (2016)

    Article  Google Scholar 

  19. S. Kumar, A. Shukla, P.P. Baul, A. Mitra, D. Halder, Food Packag. Shelf life. 16, 178–184 (2018)

    Article  Google Scholar 

  20. I. ISO, ISO—International Organization for Standardization. (Geneva, Switzerland, 2011)

  21. A. Dashipour, V. Razavilar, H. Hosseini, S. Shojaee-Aliabadi, J.B. German, K. Ghanati, M. Khakpour, R. Khaksar, Int. J. Biol. Macromol. 72, 606–613 (2015)

    Article  CAS  Google Scholar 

  22. S. Kim, K.B. Song, Int. J. Food Sci. Technol. 53(6), 1549–1557 (2018)

    Article  CAS  Google Scholar 

  23. P. Kanmani, J.-W. Rhim, Carbohydr. Polym. 106, 190–199 (2014)

    Article  CAS  Google Scholar 

  24. M. Sanchez-Garcia, J. Lagaron, S. Hoa, Comp. Sci. Technol. 70(7), 1095–1105 (2010)

    Article  CAS  Google Scholar 

  25. T. Shaili, M.N. Abdorreza, N. Fariborz, Carbohyder. Polym. 134, 726–731 (2015)

    Article  CAS  Google Scholar 

  26. B. Rukmanikrishnan, F.R.M. Ismail, R.K. Manoharan, S.S. Kim, J. Lee, Int. J. Biol. Macromol. 148, 1182–1189 (2020)

    Article  CAS  Google Scholar 

  27. S. Jafarzadeh, F. Ariffin, S. Mahmud, A. Najafi, M. Ahmad, J. Food Sci. Technol. 54(1), 105–113 (2017)

    Article  CAS  Google Scholar 

  28. M. Akbariazam, M. Ahmadi, N. Javadian, A.M. Nafchi, Int. J. Biol. Macromol. 89, 369–375 (2016)

    Article  CAS  Google Scholar 

  29. R.N. Esfahani, S. Khaghani, A. Azizi, F. Mortazaeinezhad, M. Gomarian, J. Iranian Chem. Soc. 17(1), 205–213 (2020)

    Article  CAS  Google Scholar 

  30. A.M. Nafchi, S. Mahmud, M. Robal, J. Food Eng. 113(4), 511–519 (2012)

    Article  CAS  Google Scholar 

  31. P.J.P. Espitia, N.d.F.F. Soares, R.F. Teófilo, J.S. dos Reis Coimbra, D.M. Vitor, R.A. Batista, S.O. Ferreira, N.J. de Andrade, E.A.A. Medeiros, Carbohydr. polym. 94(1), 199–208 (2013)

    Article  CAS  Google Scholar 

  32. A. Sorrentino, G. Gorrasi, V. Vittoria, Trends Food Sci. Technol. 18(2), 84–95 (2007)

    Article  CAS  Google Scholar 

  33. M.M. Marvizadeh, N. Oladzadabbasabadi, A.M. Nafchi, M. Jokar, Int. J. Biol. Macromol. 99, 1–7 (2017)

    Article  CAS  Google Scholar 

  34. M.-C. Li, Q. Wu, K. Song, H. Cheng, S. Suzuki, T. Lei, ACS Sust. Chem Eng. 4(8), 4385–4395 (2016)

    Article  CAS  Google Scholar 

  35. A.A. Oun, J.-W. Rhim, Carbohydr. Polym. 169, 467–479 (2017)

    Article  CAS  Google Scholar 

  36. R. Vaia, E. Giannelis, Polymer 42(3), 1281–1285 (2001)

    Article  CAS  Google Scholar 

  37. J. Yu, J. Yang, B. Liu, X. Ma, Bioresour. Technol. 100(11), 2832–2841 (2009)

    Article  CAS  Google Scholar 

  38. D. Mousavian, A.M. Nafchi, L. Nouri, A. Abedinia, J. Food Meas. Charact. 1–9 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Azizi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, S.L., Azizi, M.H., Movahedi, F. et al. Potential perspectives of CMC-PET/ZnO bilayer nanocomposite films for food packaging applications: physical, mechanical and antimicrobial properties. Food Measure 15, 3731–3740 (2021). https://doi.org/10.1007/s11694-021-00880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00880-3

Keywords

Navigation