Skip to main content
Log in

Bioaccessibility and bioavailability of soluble polyphenols from Capparis zeylanica fruit according to drying method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Capparis zeylanica fruits are excellent source of phytochemicals with numerous health benefits and used in several Ayurvedic preparations. But there are no studies to determine which phytochemical is responsible for those health benefits. Thus, in the present study, we evaluated the bioaccessibility and bioavailability of polyphenols from processed Capparis zeylanica fruits. The fruits were dried by shade drying (SH) and hot air drying (HD) conditions and extracted the polyphenols. The Bioaccessibility studies revealed that gallic acid was highly accessible in SH and HD with varying percentages. Gallic acid percentages in SH were 97.95% ± 4.90 in oral, 64.03% ± 3.20 in gastric and 44.76% ± 2.24 in intestinal phases followed by epicatechin (87.95% ± 4.40, 53.39% ± 2.66 and 31.0% ± 1.55 in oral, gastric, and intestinal phases, respectively) whereas, in HD, gallic acid was more bioaccessibile (97.61% ± 4.88, 57.2% ± 2.86 and 31.68% ± 1.58) followed by epicatechin (82.59% ± 4.13, 54.56% ± 2.72, and 30.47% ± 1.52) and syringic acid (5.21% ± 0.26, 12.96% ± 0.65, and 5.52% ± 0.27) in oral, gastric, and intestinal phases, respectively. Interestingly, the results were comparable with bioavailability study, performed with C57BL/6 mice showed the Tmax value of both gallic acid in SH and epicatechin in HD at two hours with a Cmax value of 31.28 µg/mL and 30.08 µg/mL of plasma, respectively. The study revealed that the processed and dehydrated Capparis zeylanica fruits were stable in in vivo system and can be used for the development of novel value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.M. Siddalinga Murthy, G.M. Vidyasagar, Traditional knowledge on medicinal plants used in the treatment of respiratory disorders in Bellary district, Karnataka, India. Indian J. Nat. Prod. Resour. 4(2), 189–193 (2013)

    Google Scholar 

  2. U. Balekari, C. Veeresham, In vivo and in vitro evaluation of anti-diabetic and insulin secretagogue activities of Capparis zeylanica. Pharmacol. Pharm. 6(07), 311–320 (2015)

    Article  CAS  Google Scholar 

  3. I.C. Arts, P.C. Hollman, Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81(1), 317S-325S (2005)

    Article  CAS  Google Scholar 

  4. G. Williamson, C. Manach, Bioavailability and bioefficacy of polyphenols in humans. II Review of 93 intervention studies. Am. J. Clin. Nutr. 81(1), 243S-255S (2005)

    Article  CAS  Google Scholar 

  5. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary guidelines for Americans. 6th edition, Washington, DC: U.S. Government Printing Office, January (2005)

  6. M. D’Archivio, C. Filesi, R. Vari, B. Scazzocchio, R. Masella, Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci. 11(4), 1321–1342 (2010)

    Article  CAS  Google Scholar 

  7. M.G. Ferruzzi, J.K. Lobo, E.M. Janle, B. Cooper, J.E. Simon, Q.L. Wu, C. Welch, L. Ho, C. Weaver, G.M. Pasinetti, Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimer’s disease. J. Alzheimer’s Dis. 18(1), 113–124 (2009)

    Article  CAS  Google Scholar 

  8. A.M. Aura, P. Martin-Lopez, K.A. O’Leary, G. Williamson, K.M. Oksman-Caldentey, K. Poutanen, C. Santos-Buelga, In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44(3), 133–142 (2005)

    Article  CAS  Google Scholar 

  9. M. Carbonaro, G. Grant, A. Pusztai, Evaluation of polyphenol bioavailability in rat small intestine. Eur. J. Nutr. 40, 84–90 (2001)

    Article  CAS  Google Scholar 

  10. G.J. McDougall, S. Fyffe, P. Dobson, D. Stewart, Anthocyanins from red wine–their stability under simulated gastrointestinal digestion. Phytochemistry 66(21), 2540–2548 (2005)

    Article  CAS  Google Scholar 

  11. O. O’Connell, L. Ryan, N. O’Brien, Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr. Res. 27, 258–264 (2007)

    Article  Google Scholar 

  12. L. Ryan, O. O’Connel, L. O’Sullivan, S.A. Aherne, N.M. O’Brien, Micellarisation of carotenoids from raw and cooked vegetables. Plant Food Hum. Nutr. 63(3), 127–133 (2008)

    Article  CAS  Google Scholar 

  13. V. Crespy, C. Morand, C. Manach, C. Besson, C. Demigne, C. Remesy, Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am. J. Physiol. 277(1), G120–G126 (1999)

    CAS  PubMed  Google Scholar 

  14. F. Granado-Lorencio, B. Olmedilla-Alonso, C. Herrero-Barbudo, B. Perez-Sacristan, I. Blanco-Navarro, S. Blazquez-Garcia, Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. J. Agric. Food Chem. 55(15), 6387–6394 (2007)

    Article  CAS  Google Scholar 

  15. I. D’Antuono, A. Garbetta, V. Linsalata, F. Minervini, A. Cardinali, Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): in vitro bio-accessibility, intestinal uptake and bioavailability. Food Funct. 6(4), 1268–1277 (2015)

    Article  CAS  Google Scholar 

  16. K. Azuma, K. Ippoushi, H. Ito, H. Higashio, J. Terao, Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J. Agric. Food Chem. 50(6), 1706–1712 (2002)

    Article  CAS  Google Scholar 

  17. S. Lesser, R. Cermak, S. Wolffram, Bioavailability of quercetin in pigs is influenced by the dietary fat content. J. Nutr. 134(6), 1508–1511 (2004)

    Article  CAS  Google Scholar 

  18. S.S. Kumar, P. Manoj, N.P. Shetty, P. Giridhar, Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. J. Sci. Food Agric. 95(9), 1812–1820 (2015)

    Article  CAS  Google Scholar 

  19. P. Hemalatha, D.P. Bomzan, B.S. Rao, Y.N. Sreerama, Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chem. 199, 330–338 (2016)

    Article  CAS  Google Scholar 

  20. P. Janhavi, S. Sindhoora, S.P. Muthukumar, Bioaccessibility and bioavailability of polyphenols from sour mangosteen (Garcinia xanthochymus) fruit. J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00508-y

    Article  Google Scholar 

  21. D. Tagliazucchi, E. Verzelloni, A. Conte, The first tract of alimentary canal as an extractor. Release of phytochemicals from solid food matrices during simulated digestion. J. Food Biochem. 36(5), 555–568 (2012)

    Article  Google Scholar 

  22. P.G. Reeves, Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 127(5), 838S-841S (1997)

    Article  CAS  Google Scholar 

  23. P. Janhavi, S. Divyashree, K.P. Sanjailal, S.P. Muthukumar, DoseCal: a virtual calculator for dosage conversion between human and different animal species. Arch. Physiol. Biochem. (2019). https://doi.org/10.1080/13813455.2019.1687523

    Article  PubMed  Google Scholar 

  24. P. Ader, A. Wessmann, S. Wolffram, Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 28(7), 1056–1067 (2000)

    Article  CAS  Google Scholar 

  25. Y. Zhang, M. Huo, J. Zhou, S. Xie, PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Prog. Biomed. 99(3), 306–314 (2010)

    Article  Google Scholar 

  26. M.M.G. Karasawa, C. Mohan, Fruits as prospective reserves of bioactive compounds: a review. Nat. Prod. Bioprospect. 8(5), 335–346 (2018)

    Article  CAS  Google Scholar 

  27. P. Etcheverry, M.A. Grusak, L.E. Fleige, Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front. Physiol. 3, 317 (2012)

    Article  CAS  Google Scholar 

  28. S. Chethan, N.G. Malleshi, Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem. 105(2), 862–870 (2007)

    Article  CAS  Google Scholar 

  29. M.J. Rein, M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S.K. Thakkar, M. da Silva Pinto, Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75(3), 588–602 (2012)

    Article  Google Scholar 

  30. W. Mullen, J.M. Rouanet, C. Auger, P.L. Teissedre, S.T. Caldwell, R.C. Hartley, A. Crozier, Bioavailability of [2-14C] quercetin-4ʹ-glucoside in rats. J. Agric. Food Chem. 56(24), 12127–12137 (2008)

    Article  CAS  Google Scholar 

  31. M.P. Swetha, C. Radha, S.P. Muthukumar, Bioaccessibility and bioavailability of Moringa oleifera seed flour polyphenols. J. Food Meas. Charact. 12(3), 1917–1926 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, CSIR-CFTRI, Mysuru, India for the encouragement during the study and first author Sallaram Sindhoora, PhD student specially thank Indian Council of Medical Research (ICMR), Delhi for the financial grant of the project and SRF fellowship.

Funding

This work was financially supported by the ICMR, Delhi (ICMR-SRF Grant File No. 3/1/2/26/2014-Nut. IRIS Cell no. 2014-21580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasupuleti Vijayanand.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhoora, S., Janhavi, P., Muthukumar, S.P. et al. Bioaccessibility and bioavailability of soluble polyphenols from Capparis zeylanica fruit according to drying method. Food Measure 15, 2491–2499 (2021). https://doi.org/10.1007/s11694-021-00832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00832-x

Keywords

Navigation