Skip to main content
Log in

Bioaccessibility and bioavailability of polyphenols from sour mangosteen (Garcinia xanthochymus) fruit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

A Correction to this article was published on 17 June 2020

This article has been updated

Abstract

Sour mangosteen fruits are good dietary sources of polyphenols with various health benefits. To understand the effects of dietary polyphenols on human health it is essential to determine their stability and fate in the lumen. In the present study, we evaluated the bioaccessibility and bioavailability of fruit peel and rind phenolic extract by in vitro gastrointestinal and in vivo mouse (C57BL/6) models. The results of bioaccessibility of peel showed that epicatechin was highly bioaccessible in oral (97.59% ± 4.87), gastric (82.09% ± 4.01) as well as intestinal (41.60% ± 2.88) phase followed by chlorogenic, syringic and gallic acids whereas, in rind, the gallic acid was highly bioaccessible in oral (66.59% ± 3.93) and gastric (42.89% ± 3.01) phase followed by catechin and chlorogenic acid, however, in intestinal phase catechin (30.99% ± 1.98) was highly bioaccessible followed by gallic acid and chlorogenic acid. Gastric pH also favored the recovery of syringic and sinapic acids. Similar results were also observed in bioavailability study in in-vivo animal model with the Tmax value of both the epicatechin in peel and the catechin in rind was 2 h with a Cmax value of 62.03 and 1.10 µg/mL of plasma respectively. To conclude, the sour mangosteen fruit peel and rind polyphenols are stable in gastrointestinal tract environment and their bioactives are more bioavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 17 June 2020

    The original version of the article requires an update to the one of the affiliations of the authors in the author group.

References

  1. P. Ader, A. Wessmann, S. Wolffram, Bioavailability aand metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 28(7), 1056–1067 (2000)

    CAS  PubMed  Google Scholar 

  2. S. Baba, N. Osakabe, M. Natsume, Y. Muto, T. Takizawa, J. Terao, In vivo comparison of the bioavailability of (+)-catechin,(–)-epicatechin and their mixture in orally administered rats. J. Nutr. 131(11), 2885–2891 (2001)

    CAS  PubMed  Google Scholar 

  3. S. Baggett, P. Protiva, E.P. Mazzola, H. Yang, E.T. Ressler, M.J. Basile, E.J. Kennelly, Bioactive benzophenones from Garcinia × anthochymus fruits. J. Nat. Prod. 68(3), 354–360 (2005)

    CAS  PubMed  Google Scholar 

  4. R.K. Baslas, P. Kumar, Isolation and characterization of biflavanone and xanthones in the fruits of Garcinia xanthochymus. Acta Cienc. Indica Chem. 7(1), 31–34 (1981)

    CAS  Google Scholar 

  5. W. Chanmahasathien, Y. Li, M. Satake, Y. Oshima, N. Ruangrungsi, Y. Ohizumi, Prenylated xanthones with NGF-potentiating activity from Garcinia xanthochymus. Phytochemistry 64(5), 981–986 (2003)

    CAS  PubMed  Google Scholar 

  6. C.Y. Chen, P.E. Milbury, H.K. Kwak, F.W. Collins, P. Samuel, J.B. Blumberg, Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 134(6), 1459–1466 (2004)

    CAS  PubMed  Google Scholar 

  7. S. Chethan, N.G. Malleshi, Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem. 105(2), 862–870 (2007)

    CAS  Google Scholar 

  8. K.K. Darji, P. Shetgiri, P.M. D’mello, Evaluation of antioxidant and antihyperlipidemic activity of extract of Garcinia indica. Int. J. Pharm. Sci. Res. 1(12), 175–181 (2010)

    Google Scholar 

  9. R.S. Devi, S. Chakroborty, S. Kumar, N.K. Dhal (2019) Garcinia xanthochymus Hook. f. ex T. Anderson: an ethnobotanically important tree species of the similipal biosphere reserve, India. In: Ethnopharmacology and biodiversity of medicinal plants (pp. 385–396). Apple Academic Press

  10. M.L. Failla, F. Gutierrez-Orozco (2017). Mangosteen Xanthones: bioavailability and bioactivities. Fruit and vegetable phytochemicals: chemistry and human health, 2, 165, Wiley, New Jersey

  11. E. Fernandez-Garcia, I. Carvajal-Lerida, A. Perez-Galvez, In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 29(11), 751–760 (2009)

    CAS  PubMed  Google Scholar 

  12. F. Gutierrez-Orozco, M.L. Failla, Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5(8), 3163–3183 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Gonzalez-Gallego, M.V. García-Mediavilla, S. Sánchez-Campos, M.J. Tuñón, Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 104(S3), S15–S27 (2010)

    CAS  PubMed  Google Scholar 

  14. X. Han, T. Shen, H. Lou, Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 8(9), 950–988 (2007)

    CAS  PubMed Central  Google Scholar 

  15. N.K.N.C. Hassan, M. Taher, D. Susanti, Phytochemical constituents and pharmacological properties of Garcinia xanthochymus-a review. Biomed. Pharmacother. 106, 1378–1389 (2018)

    Google Scholar 

  16. K. Hayamizu, H. Hirakawa, D. Oikawa, T. Nakanishi, T. Takagi, T. Tachibana, M. Furuse, Effect of Garcinia cambogia extract on serum leptin and insulin in mice. Fitoterapia 74(3), 267–273 (2003)

    CAS  PubMed  Google Scholar 

  17. Y. Hilal, U. Engelhardt, Characterisation of white tea–comparison to green and black tea. Journal für Verbraucherschutz und Lebensmittelsicherheit 2(4), 414–421 (2007)

    CAS  Google Scholar 

  18. W.Y. Huang, H.C. Zhang, W.X. Liu, C.Y. Li, Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 13(2), 94–102 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. K.S. Joseph, V.S. Dandin, N. Murthy Hosakatte, Chemistry and biological activity of Garcinia xanthochymus: a review. J. Biol. Active Prod. Nat. 6(3), 173–194 (2016)

    Google Scholar 

  20. K. Judprasong, S. Charoenkiatkul, P. Thiyajai, M. Sukprasansap, Nutrients and bioactive compounds of Thai indigenous fruits. Food Chem. 140(3), 507–512 (2013)

    CAS  PubMed  Google Scholar 

  21. H. Kaur, G. Kaur, A critical appraisal of solubility enhancement techniques of polyphenols. J. Pharm. (2014)

  22. N.A. Khatib, P.A. Patil, Evaluation of garcina indica whole fruit extracts for hypoglycemic potential in streptozotocin induced hyperglycemic rats. Res. J. Pharm. Technol. 4(6), 999–1003 (2011)

    Google Scholar 

  23. P.M. Kidd, Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern. Med. Rev. 14(3), 226–246 (2009)

    PubMed  Google Scholar 

  24. M. Kofink, M. Papagiannopoulos, R. Galensa, (-)-Catechin in cocoa and chocolate: occurence and analysis of an atypical flavan-3-ol enantiomer. Molecules 12(7), 1274–1288 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79(5), 727–747 (2004)

    CAS  PubMed  Google Scholar 

  26. P. Murmu, S. Kumar, J.K. Patra, N.R. Singh, S.K. Rath, Ethnobotanical, nutritional, phytochemical and antimicrobial studies of Garcinia xanthochymus fruit extracts. Biotechnol. J. Int. 13, 1–11 (2016)

    Google Scholar 

  27. A.S. Meyer, J.L. Donovan, D.A. Pearson, A.L. Waterhouse, E.N. Frankel, Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. J. Agric. Food Chem. 46(5), 1783–1787 (1998)

    CAS  Google Scholar 

  28. W. Mullen, J.M. Rouanet, C. Auger, P.L. Teissedre, S.T. Caldwell, R.C. Hartley, M.E. Lean, C.A. Edwards, A. Crozier, Bioavailability of [2-14C] quercetin-4′-glucoside in rats. J. Agric. Food Chem. 56(24), 12127–12137 (2008)

    CAS  PubMed  Google Scholar 

  29. T. Okubo, N. Ishihara, A. Oura, M. Serit, M. Kim, T. Yamamoto, T. Mitsuoka, Bioscience, In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism. Biotechnol. Biochem. 56(4), 588–591 (1992)

    CAS  Google Scholar 

  30. A. Perez-Vicente, A. Gil-Izquierdo, C. Garcia-Viguera, In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 50(8), 2308–2312 (2002)

    CAS  PubMed  Google Scholar 

  31. P.G. Reeves, Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 127(5), 838S-841S (1997)

    CAS  PubMed  Google Scholar 

  32. M.J. Rein, M. Renouf, C. Cruz-Hernandez, L. Actis‐Goretta, S.K. Thakkar, M. da Silva Pinto, Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75(3), 588–602 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. C.A. Rice-evans, N.J. Miller, P.G. Bolwell, P.M. Bramley, J.B. Pridham, The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22(4), 375–383 (1995)

    CAS  PubMed  Google Scholar 

  34. A. Scalbert, C. Morand, C. Manach, C. Rémésy, Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 56(6), 276–282 (2002)

    CAS  PubMed  Google Scholar 

  35. M.V. Selma, J.C. Espin, F.A. Tomas-Barberan, Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57(15), 6485–6501 (2009)

    CAS  PubMed  Google Scholar 

  36. R. Seto, H. Nakamura, F. Nanjo, Y. Hara, Preparation of epimers of tea catechins by heat treatment. Biosci. Biotechnol. Biochem. 61(9), 1434–1439 (1997)

    CAS  Google Scholar 

  37. R.G. Singh, P.S. Negi, C. Radha, Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 5(4), 1883–1891 (2013). https://doi.org/10.1016/j.jff.2013.09.009

    Article  CAS  Google Scholar 

  38. J.L. Slavin, B. Lloyd, Health benefits of fruits and vegetables. Adv. Nutr. 3(4), 506–516 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M.P. Swetha, C. Radha, S.P. Muthukumar, Bioaccessibility and bioavailability of Moringa oleifera seed flour polyphenols. J. Food Meas. Charact. 12(3), 1917–1926 (2018)

    Google Scholar 

  40. D. Tagliazucchi, E. Verzelloni, A. Conte, The first tract of alimentary canal as an extractor. Release of phytochemicals from solid food matrices during simulated digestion. J. Food Biochem. 36(5), 555–568 (2012)

    Google Scholar 

  41. J. Terao, H. Karasawa, H. Arai, A. Nagao, T. Suzuki, K. Takama, Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution. Biosci. Biotechnol. Biochem. 57, 1204–1205 (1993)

    CAS  PubMed  Google Scholar 

  42. S.C. Tsinontides, P. Rajniak, D. Pham, W.A. Hunke, J. Placek, S.D. Reynolds, Freeze drying—principles and practice for successful scale-up to manufacturing. Int. J. Pharm. 280(1–2), 1–16 (2004)

    CAS  PubMed  Google Scholar 

  43. H. Wijngaard, N. Brunton, The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J. Agric. Food Chem. 57, 10625–10631 (2009)

    CAS  PubMed  Google Scholar 

  44. H.H. Wijngaard, N. Brunton, The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Eng. 96, 134–140 (2010)

    CAS  Google Scholar 

  45. H.H. Wijngaard, M. Ballay, N. Brunton, The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 133(4), 1123–1130 (2012)

    CAS  Google Scholar 

  46. P.C. Wootton-Beard, A. Moran, L. Ryan, Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 44(1), 217–224 (2011)

    CAS  Google Scholar 

  47. Y. Zhang, M. Huo, J. Zhou, S. Xie, PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Program Biomed. 99(3), 306–314 (2010)

    Google Scholar 

  48. F. Zhong, Y. Chen, P. Wang, H. Feng, G. Yang, Xanthones from the bark of Garcinia xanthochymus and their 1, 1-Diphenyl‐2‐picrylhydrazyl radical‐scavenging activity. Chin. J. Chem. 27(1), 74–80 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Department of Biochemistry and Director, CSIR-CFTRI, for providing the infrastructure and facilities to carry out this work. The first author Ms. Janhavi P, thanks DST for financial support in the form of INSPIRE Fellowship.

Funding

This work was financially supported by the DST under DST INSPIRE Fellowship scheme (No. DST/INSPIRE Fellowship/2014/IF150409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Muthukumar.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janhavi, P., Sindhoora, S. & Muthukumar, S.P. Bioaccessibility and bioavailability of polyphenols from sour mangosteen (Garcinia xanthochymus) fruit. Food Measure 14, 2414–2423 (2020). https://doi.org/10.1007/s11694-020-00488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00488-z

Keywords

Navigation