Skip to main content

Advertisement

Log in

Effect of cinnamon bark and twig extracts on the chemical, physicochemical and antioxidant properties of fermented milk

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of cinnamon bark (CB) and twig (CT) extracts on the chemical (total phenolics (TPC), flavonoids (TFC), sugars content), physicochemical (pH, total acidity, shear viscosity) and antioxidant (DPPH, FRAP) properties of fermented milk (FM). Besides, the effect of in vitro digestion on the antioxidant activity of FM was also evaluated. Initially, the optimum extraction time of CB and CT were determined, followed by chemicals profiling by using UPLC-MS/MS. The encapsulated CB(ECB) and CT(ECT) were then prepared using maltodextrin. FMs (control, CB-/ECB-FM and CT-/ECT-FM) were prepared through fermentation using commercial starter cultures, and its physicochemical properties were ascertained. Lastly, the changes of chemical and antioxidant properties of FMs before and after digestion were determined. Results indicated that CB (from 1 h extraction) contained broader range of chemicals and exhibited higher antioxidant activity than CT (from 2h extraction). The chemical, physicochemical and antioxidant properties of FM were found significantly (p < 0.05) affected with the addition of CB and CT (both free and encapsulated form). Encapsulation successfully protected TFC from lost upon gastric digestion of ECB-FM, but not for ECT-FM. Nonetheless, antioxidant activity of all samples was dropped dramatically after intestinal digestion. Among the samples, only CB-FM exhibited the highest antioxidant activity (28.57 ± 0.18% inhibition) upon digestion. This study provides an insight that post-digestive bioactivity should be used as the index to evaluate the bioactivity status of functional foods, instead of bioactivity level of the product itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding author upon request.

References

  1. J. Park, H.S. Lee, C. Lee, H. Lee, Int. Dairy. J. 95, 78–85 (2019)

    Google Scholar 

  2. F. Zingone, C. Bucci, P. Lovino, C. Ciacci, Nutr. 33, 322–325 (2017)

    Google Scholar 

  3. A.I. Patel, S.D. Moghadam, M. Freedman, A. Hazari, M.L. Fang, I.E. Allen, Prev. Med. 111, 151–162 (2018)

    PubMed  Google Scholar 

  4. D. Granato, J.S. Santos, R.D.S. Salem, A.M. Mortazavian, R.S. Rocha, A.G. Cruz, Curr. Opin. Food Sci. 19, 1–7 (2018)

    Google Scholar 

  5. A.C. Conti-Silva, P.K. Souza-Borges, Food Res. Int. 116, 184–189 (2019)

    CAS  PubMed  Google Scholar 

  6. Z. Akin, T. Ozcan, LWT-Food Sci. Technol. 86, 25–30 (2017)

    CAS  Google Scholar 

  7. K.H. Cha, E.H. Lee, H.S. Yoon, J.H. Lee, J.Y. Kim, K. Kang, J. Park, J.B. Jin, G. Ko, C. Pan, Food Chem. 263, 216–224 (2018)

    CAS  PubMed  Google Scholar 

  8. M. Aspri, G. Leni, G. Galaverna, P. Papademas, Food Chem. 268, 476–484 (2018)

    CAS  PubMed  Google Scholar 

  9. M. Ayyash, A.K. Al-Nuaimi, S. Al-Mahadin, S. Liu, Food Chem. 239, 588–597 (2018)

    CAS  PubMed  Google Scholar 

  10. S.M. Abdollahzadeh, M.R. Zahedani, S. Rahmdel, F. Hemmati, S.M. Mazloomi, LWT-Food Sci. Technol. 98, 577–582 (2018)

    CAS  Google Scholar 

  11. C. Chan, R. Gan, N.P. Shah, H. Corke, Food Biosci. 26, 185–192 (2018)

    CAS  Google Scholar 

  12. A.L.D. Batista, R. Silva, L.P. Cappato, M.V.S. Ferreira, K.O. Nascimento, M. Schmiele, E.A. Esmerino, C.F. Balthazar, H.L.A. Silva, J. Moraes, T.C. Pimentel, M.Q. Freitas, R.S.L. Raices, M.C. Silva, A.G. Cruz, J. Funct. Foods 38, 242–250 (2017)

    CAS  Google Scholar 

  13. N. Su, J. Li, L. Yang, G. Hou, M. Ye, J. Funct. Foods 43, 234–241 (2018)

    CAS  Google Scholar 

  14. V.V. Illupapalayam, S.C. Smith, S. Gamlath, LWT-Food Sci. Technol. 55, 255–262 (2014)

    CAS  Google Scholar 

  15. L.R. Romas, J.S. Santos, H. Daguer, A.C. Valese, A.C. Cruz, D. Granato, Food Chem. 221, 950–958 (2017)

    Google Scholar 

  16. T. Zhang, C.H. Jeong, W.N. Cheng, H. Bae, H.G. Seo, M.C. Petriello, S.G. Han, LWT-Food Sci. Technol. 101, 276–284 (2019)

    CAS  Google Scholar 

  17. A.B. Shori, A.S. Baba, J. Assoc. Arab Univ. Basic Appl. Sci. 11, 50–55 (2012)

    Google Scholar 

  18. A.B. Shori, A.S. Baba, J. Saudi Chem. Soc. 17, 295–301 (2013)

    CAS  Google Scholar 

  19. M. Alotaibi, Reprod. Biol. 16, 27–33 (2016)

    PubMed  Google Scholar 

  20. Z. Liao, J. Wang, H. Tan, L. Wei, Gene 627, 519–523 (2017)

    CAS  PubMed  Google Scholar 

  21. N.G. Vasconcelos, J. Croda, S. Simionatto, Microb. Pathog. 120, 198–203 (2018)

    CAS  PubMed  Google Scholar 

  22. B.P. Lopes, T.G. Gaique, L.L. Souza, G.S.M. Paula, G.E.G. Kluck, G.C. Atella, C.C. Pazos-Moura, K.J. Oliveira, J. Funct. Foods 50, 210–215 (2018)

    CAS  Google Scholar 

  23. H.O. Santos, G.A.R. Silva, Clin. Nutr. ESPEN 27, 1–9 (2018)

    PubMed  Google Scholar 

  24. S.K. Ezzat, M.T. AbuElkhair, M.I. Mourad, M.E. Helal, M.E. Grawish, Biochem. Biophys. Rep. 12, 72–78 (2017)

    PubMed  PubMed Central  Google Scholar 

  25. R. Khan, M. Sharma, L. Kumar, S.A. Husain, A. Sharma, J. Herb. Med. 6, 149–156 (2016)

    Google Scholar 

  26. R.A. Anderson, Z. Zhan, R. Luo, X. Guo, Q. Guo, J. Zhou, J. Kong, P.A. Davis, B.J. Stoeker, J. Tradit. Complement. Med. 6, 332–336 (2016)

    PubMed  Google Scholar 

  27. V.B. Souza, M. Thomazini, M.A.E. Barrientos, C.M. Nalin, R. Ferro-Furtado, M.I. Genovese, C.S. Favaro-Trindade, Food Hydrocoll. 77, 297–306 (2018)

    Google Scholar 

  28. E.L. Avila, M.C. Rodriguez, H.J.C. Velasquez, Rev. Fac. Nac. Agron. Medellin. 68, 7509–7520 (2015)

    Google Scholar 

  29. B. Qian, Y. Deng, L. Xie, H. Zhang, Philipp Agric. Sci. 93, 299–306 (2010)

    Google Scholar 

  30. A.B. Shori, A.S. Baba, J. Saudi Soc. Agric. Sci. 10, 101–107 (2011)

    CAS  Google Scholar 

  31. S. Tabasum, S. Khare, K. Jain, Asian J. Pharm Clin. Res. 9, 371–374 (2016)

    CAS  Google Scholar 

  32. T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. Nishimura, Y.C. Lee, Anal. Biochem. 339, 69–72 (2005)

    CAS  PubMed  Google Scholar 

  33. I.F. Benzie, J.J. Strain, Methods Enzymol. 299, 15–27 (1999)

    CAS  PubMed  Google Scholar 

  34. S. Amirdivani, A. Baba, LWT-Food Sci. Technol. 44, 1458–1464 (2011)

    CAS  Google Scholar 

  35. H.Y. Yu, L. Wang, K.L. McCarthy, J. Food Drug Anal. 24, 804–812 (2016)

    CAS  PubMed  Google Scholar 

  36. M. Millette, A. Nguyen, K.M. Amine, M. Lacroix, Int. J. Probiotics Prebiotics 8, 149–156 (2013)

    Google Scholar 

  37. M. Przygodzka, D. Zielinska, Z. Ciesarova, K. Kukurova, H. Zielinski, LWT-Food Sci. Technol. 58, 321–326 (2014)

    CAS  Google Scholar 

  38. R. Ribeiro-Santos, M. Andrade, D. Madella, A.P. Martinazzo, L.A.G. Moura, N.R. Melo, A. Sanches-Silva, Trends Food Sci. Technol. 62, 154–169 (2017)

    CAS  Google Scholar 

  39. D.M. Cheng, P. Kuhn, A. Poulev, L.E. Rojo, M.A. Lila, I. Raskin, Food Chem. 135, 2994–3002 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Ding, E.Q. Wu, C. Liang, J. Chen, M.N. Tran, C.H. Hong, Y. Jang, K.L. Park, K. Bae, Y.H. Kim, J.S. Kang, Food Chem. 127, 755–760 (2011)

    CAS  PubMed  Google Scholar 

  41. M. Ervina, H.S. Lie, J. Diva, Caroline, S. Tewfik, I. Tewfik, Biocatal. Agric Biotechnol. 19, 101152 (2019)

    Google Scholar 

  42. A. Li, G. Li, Y. Li, X. Wu, D. Ren, H. Lou, X. Wang, T. Shen, Phytomedicine 53, 143–153 (2019)

    CAS  PubMed  Google Scholar 

  43. G. Lin, Y. Chen, P. Yen, S. Chang, J. Tradit. Complement. Med. 6, 281–288 (2016)

    PubMed  Google Scholar 

  44. L. Jiao, X. Zhang, L. Huang, H. Gong, B. Cheng, Y. Sun, Y. Li, Q. Liu, L. Zheng, K. Huang, Food Chem. Toxicol. 56, 398–405 (2013)

    CAS  PubMed  Google Scholar 

  45. V. Lavelli, P.S.C. Sri-Harsha, G. Spingno, Food Chem. 209, 323–331 (2016)

    CAS  PubMed  Google Scholar 

  46. Y. Zhang, D. Li, J. Lv, Q. Li, C. Kong, Y. Luo, Int. J. Food Microbiol. 249, 1–8 (2017)

    CAS  PubMed  Google Scholar 

  47. J. Bucha-Kolendo, B. Sokolowska, Acta Biochim. Pol. 64, 459–464 (2017)

    Google Scholar 

  48. N. Harbourne, J.C. Jacquier, D. O’Riordan, Int. Dairy J. 21, 185–191 (2011)

    CAS  Google Scholar 

  49. A.K.M. Masum, J. Chandrapala, B. Adhikari, T. Huppertz, B. Zisu, J. Food Eng. 254, 34–41 (2019)

    CAS  Google Scholar 

  50. W. Quan, X. Qie, Y. Chen, M. Zeng, F. Qin, J. Chen, Z. He, Food Chem. 308, 125598 (2020)

    CAS  PubMed  Google Scholar 

  51. Y. Jin, Y. Yu, Y. Qi, F. Wang, J. Yan, H. Zou, J. Proteomics 141, 24–46 (2016)

    CAS  PubMed  Google Scholar 

  52. K. Sarabandi, S.M. Jafari, A.S. Mahoonak, A. Mohammadi, Int. J. Biol. Macromol. 140, 59–68 (2019)

    CAS  PubMed  Google Scholar 

  53. A. Kyriakoudi, M.Z. Tsimidou, Food Chem. 266, 458–465 (2018)

    CAS  PubMed  Google Scholar 

  54. B. Ester, B. Noelia, C. Laura, P. Francesca, B. Cristina, L. Rosalba, D.R. Marco, LWT-Food Sci. Technol. 111, 883–888 (2019)

    CAS  Google Scholar 

  55. C.R.L. Francisco, S.A. Helen, I.P.M. Fernandes, J.C.M. Barreira, R.C. Calhelha, L. Barros, O.H. Goncalves, I.C.F.R. Ferreira, M.F. Barreiro, Food Chem. 245, 845–853 (2018)

    CAS  PubMed  Google Scholar 

  56. E. Gonzalez, A.M. Gomez-Caravaca, B. Gimenez, R. Cebrian, M. Maqueda, A. Martinez-Ferez, A. Segura-Carretero, P. Robert, Food Chem. 279, 40–48 (2019)

    CAS  PubMed  Google Scholar 

  57. X. Lu, C. Li, Q. Huang, Int. J. Biol. Macromol. 139, 917–924 (2019)

    CAS  PubMed  Google Scholar 

  58. F. Zhang, F. Liu, A.M. Abbasi, X. Chang, X. Guo, Molecules 24, 703–716 (2019)

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Booi Chin Hai, laboratory officer of Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College for his assistance in this study. Furthermore, we would also like to express our deepest appreciation to Tunku Abdul Rahman University College for the financial support.

Funding

This research was supported by the departmental teaching fund of Faculty of Applied Sciences, Tunku Abdul Rahman University College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Ling Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, P.L., Chen, Y.T., Qin, J. et al. Effect of cinnamon bark and twig extracts on the chemical, physicochemical and antioxidant properties of fermented milk. Food Measure 14, 2271–2281 (2020). https://doi.org/10.1007/s11694-020-00474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00474-5

Keywords

Navigation