Skip to main content
Log in

Determination of coffee fruit antioxidants cultivated in Saudi Arabia under different drying conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Coffee is one of the most widely used beverages in the world. Postharvest techniques mainly affect the nutritional value and bioactive components of the food samples. In this study, the effect of drying methods and extraction solvents was assessed on different parts of coffee fruit. The total polyphenol content, total flavonoid content, and the antioxidant activity in terms of DPPH scavenging and reducing power of the samples were measured. Results revealed that oven drying of the coffee fruit parts led to significantly higher total polyphenol content, total flavonoid content, and antioxidant activities compared to the shade drying at room temperature. Ethyl acetate extracts of all samples exhibited significantly lower total polyphenol content, total flavonoid content, and antioxidant activities than the methanolic extracts. Coffee beans were more potent in terms of phenolic content and antioxidant activity as compared to the coffee pulp and parchment. These results suggest that oven drying method can be adopted for processing of coffee fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. USDA, Coffee: world market and trade. (2018). http://www.fas.usda.gov/data/coffee-world-markets-and-trade

  2. F. Anthony, M.C. Combes, C. Astorga, B. Bertrand, G. Graziosi, P. Lashermes, The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theor. Appl. Genet. 104(5), 894–900 (2002). https://doi.org/10.1007/s00122-001-0798-8

    Article  CAS  PubMed  Google Scholar 

  3. H.A.J. Pohlan, M.J. Janssens, Growth and production of coffee, in Soils, Plant Growth and Crop Production, ed. by W.H. Verheye (EOLSS Publications, Abu Dhabi, 2010), pp. 102–134

    Google Scholar 

  4. FAOSTAT (2015) Coffee 2015. http://www.fao.org/3/a-i4985e.pdf

  5. P. Ghosh, N. Venkatachalapathy, Processing and drying of coffee—a review. Int. J. Eng. Res. Technol. 3(12), 784–794 (2014)

    Google Scholar 

  6. H.D. Belitz, W. Grosch, P. Schieberle, Coffee, tea, cocoa, in Food Chemistry, ed. by H.D. Belitz, W. Grosch, P. Schieberle (Springer, Berlin, 2009)

    Google Scholar 

  7. D. Brand, A. Pandey, S. Roussos, C.R. Soccol, Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb. Technol. 27(1–2), 127–133 (2000). https://doi.org/10.1016/S0141-0229(00)00186-1

    Article  CAS  PubMed  Google Scholar 

  8. A.S. Franca, Leandro S. Oliveira, Coffee processing solid wastes: current uses and future perspectives. Agric. Wastes 9, 155–189 (2009)

    Google Scholar 

  9. P.N. Navya, S.M. Pushpa, Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess Biosyst. Eng. 36(8), 1115–1123 (2013). https://doi.org/10.1007/s00449-012-0865-3

    Article  CAS  PubMed  Google Scholar 

  10. A. Napolitano, V. Fogliano, A. Tafuri, A. Ritieni, Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agric. Food Chem. 55(25), 10499–10504 (2007). https://doi.org/10.1021/jf071959+

    Article  CAS  PubMed  Google Scholar 

  11. A. Pourfarzad, H. Mahdavian-Mehr, N. Sedaghat, Coffee silverskin as a source of dietary fiber in bread-making: optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 50(2), 599–606 (2013). https://doi.org/10.1016/j.lwt.2012.08.001

    Article  CAS  Google Scholar 

  12. W. Mullen, B. Nemzer, B. Ou, A. Stalmach, J. Hunter, M.N. Clifford, E. Combet, The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. J. Agric. Food Chem. 59(8), 3754–3762 (2011). https://doi.org/10.1021/jf200122m

    Article  CAS  PubMed  Google Scholar 

  13. K.L. Johnston, M.N. Clifford, L.M. Morgan, Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 78(4), 728–733 (2003)

    Article  CAS  Google Scholar 

  14. E. Thom, The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J. Int. Med. Res. 35(6), 900–908 (2007). https://doi.org/10.1177/147323000703500620

    Article  CAS  PubMed  Google Scholar 

  15. M. Tyszka-Czochara, K. Pawel, M. Marcin, Caffeic acid expands anti-tumor effect of metformin in human metastatic cervical carcinoma HTB-34 cells: implications of AMPK activation and impairment of fatty acids de novo biosynthesis. Int. J. Mol. Sci. 18(2), 462 (2017). https://doi.org/10.3390/ijms18020462

    Article  CAS  PubMed Central  Google Scholar 

  16. K.S. Andrade, R.T. Gonalvez, M. Maraschin, R.M. Ribeiro-Do-Valle, J. Martínez, S.R.S. Ferreira, Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta 88, 544–552 (2012). https://doi.org/10.1016/j.talanta.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  17. L.F. Ballesteros, J.A. Teixeira, S.I. Mussatto, Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin. Food Bioprocess Technol. 7, 1322–1332 (2014). https://doi.org/10.1007/s11947-013-1115-7

    Article  CAS  Google Scholar 

  18. G. Budryn, E. Nebesny, A. Podsȩdek, D. Zyzelewicz, M. Materska, S. Jankowski, B. Janda, Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and maillard reaction products in coffee beans. Eur. Food Res. Technol. 228(6), 913–922 (2009). https://doi.org/10.1007/s00217-008-1004-x

    Article  CAS  Google Scholar 

  19. M. Pinelo, A.G. Tress, M. Pedersen, A. Arnous, A.S. Meyer, Effect of cellulases, solvent type and particle size distribution on the extraction of chlorogenic acid and other phenols from spent coffee grounds. Am. J. Food Technol. 2(7), 641–651 (2007). https://doi.org/10.3923/ajft.2007.641.651

    Article  Google Scholar 

  20. W. Dong, R. Hu, Z. Chu, J. Zhao, L. Tan, Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of Robusta coffee beans. Food Chem. 234, 121–130 (2017). https://doi.org/10.1016/j.foodchem.2017.04.156

    Article  CAS  PubMed  Google Scholar 

  21. C. Geromel, L.P. Ferreira, F. Davrieux, B. Guyot, F. Ribeyre, M.B. dos Santos Scholz, L.F.P. Pereira et al., Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol. Biochem. 46(5–6), 569–579 (2008). https://doi.org/10.1016/j.plaphy.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  22. G.V. de melo Pereira, D.P. Carvalho Neto, A.I. Magalhães Júnior, Z.S. Vásquez, A.B.P. Medeiros, L.P.S. Vandenberghe, C.R. Soccol, Exploring the impacts of postharvest processing on the aroma formation of coffee beans—a review. Food Chem. 272, 441–452 (2019). https://doi.org/10.1016/j.foodchem.2018.08.061

    Article  CAS  Google Scholar 

  23. M.A. Sfredo, J.R.D. Finzer, J.R. Limaverde, Study of the drying process of Arabica coffee cherries using vibrated trays driers in the fine drink attainment, Harvard. In The 13th International Drying Symposium (IDS 2002), (2002), pp. 1342–1351

  24. M.A. Sfredo, J.R.D. Finzer, J.R. Limaverde, Heat and mass transfer in coffee fruits drying. J. Food Eng. 70(1), 15–25 (2005). https://doi.org/10.1016/j.jfoodeng.2004.09.008

    Article  Google Scholar 

  25. K. Hayat, S. Abbas, C. Jia, S. Xia, X. Zhang, Comparative study on phenolic compounds and antioxidant activity of Feutrell’s Early and Kinnow peel extracts. J. Food Biochem. 35, 454–471 (2011). https://doi.org/10.1111/j.1745-4514.2010.00395.x

    Article  CAS  Google Scholar 

  26. H. Noreen, N. Semmar, M. Farman, J.S.O. McCullagh, Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 10, 792–801 (2017). https://doi.org/10.1016/j.apjtm.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  27. K. Hayat, X. Zhang, U. Farooq, S. Abbas, S. Xia, C. Jia, F. Zhong, J. Zhang, Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123, 423–429 (2010). https://doi.org/10.1016/j.foodchem.2010.04.060

    Article  CAS  Google Scholar 

  28. M.W. Cheong, K.H. Tong, J.J.M. Ong, S.Q. Liu, P. Curran, B. Yu, Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 51, 388–396 (2013). https://doi.org/10.1016/j.foodres.2012.12.058

    Article  CAS  Google Scholar 

  29. I. Hečimović, A. Belščak-Cvitanović, D. Horžić, D. Komes, Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129, 991–1000 (2011). https://doi.org/10.1016/j.foodchem.2011.05.059

    Article  CAS  PubMed  Google Scholar 

  30. S. Roshanak, M. Rahimmalek, S.A.H. Goli, Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 53, 721–729 (2016). https://doi.org/10.1007/s13197-015-2030-x

    Article  CAS  PubMed  Google Scholar 

  31. H.S. Kwak, S. Ji, Y. Jeong, The effect of air flow in coffee roasting for antioxidant activity and total polyphenol content. Food Control 71, 210–216 (2017)

    Article  CAS  Google Scholar 

  32. M. Doğan, D. Aslan, V. Gürmeriç, A. Özgür, M.G. Saraç, Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: principal component analyses (PCA) for flow and bioactive properties. Powder Technol. 344, 222–232 (2019)

    Article  Google Scholar 

  33. D. Arslan, M.M. Özcan, Study the effect of sun, oven and microwave drying on quality of onion slices. LWT Food Sci. Technol. 43, 1121–1127 (2010). https://doi.org/10.1016/j.lwt.2010.02.019

    Article  CAS  Google Scholar 

  34. C.-H. Chang, H.-Y. Lin, C.-Y. Chang, Y.-C. Liu, Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 77(3), 478–485 (2006). https://doi.org/10.1016/j.jfoodeng.2005.06.061

    Article  CAS  Google Scholar 

  35. K. Hayat, X. Zhang, H. Chen, S. Xia, C. Jia, F. Zhong, Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Sep. Purif. Technol. 73, 371–376 (2010). https://doi.org/10.1016/j.seppur.2010.04.026

    Article  CAS  Google Scholar 

  36. K. Hayat, S. Abbas, S. Hussain, S.A. Shahzad, M.U. Tahir, Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed. Ind. Crops Prod. 140, 111610 (2019)

    Article  CAS  Google Scholar 

  37. M.B. Hossain, C. Barry-Ryan, A.B. Martin-Diana, N.P. Brunton, Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 123, 85–91 (2010). https://doi.org/10.1016/j.foodchem.2010.04.003

    Article  CAS  Google Scholar 

  38. É.R. Oliveira, R.F. Silva, P.R. Santos, F. Queiroz, Potential of alternative solvents to extract biologically active compounds from green coffee beans and its residue from the oil industry. Food Bioprod. Process. 115, 47–58 (2019). https://doi.org/10.1016/j.fbp.2019.02.005

    Article  CAS  Google Scholar 

  39. G.G. Marcheafave, C.D. Tormena, E.D. Pauli, M. Rakocevic, R.E. Bruns, I.S. Scarminio, Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem. J. 146, 713–721 (2019). https://doi.org/10.1016/j.microc.2019.01.073

    Article  CAS  Google Scholar 

  40. R.A. Dixon, N.L. Paiva, Stress-induced phenylpropanoid metabolism. Plant Cell 7(7), 1085–1097 (1995)

    Article  CAS  Google Scholar 

  41. M. Geremu, Y.B. Tola, A. Sualeh, Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chem. Biol. Technol. Agric. 3(1), 25 (2016). https://doi.org/10.1186/s40538-016-0077-1

    Article  CAS  Google Scholar 

  42. N.F. Lasano, A. Rahmat, N.S. Ramli, M.F. Abu Bakar, Effect of oven and microwave drying on polyphenols content and antioxidant capacity of herbal tea from Strobilanthes crispus leaves. Asian J. Pharm. Clin. Res. 11(6), 363–368 (2018). https://doi.org/10.22159/ajpcr.2018.v11i6.24660

    Article  CAS  Google Scholar 

  43. S.-N. Lou, Y.-C. Lai, J.-D. Huang, C.-T. Ho, L.-H.A. Ferng, Y.-C. Chang, Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chem. 171, 356–363 (2015). https://doi.org/10.1016/j.foodchem.2014.08.119

    Article  CAS  PubMed  Google Scholar 

  44. J. Pinela, L. Barros, M. Dueñas, A.M. Carvalho, C. Santos-Buelga, I.C.F.R. Ferreira, Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: effects of drying and oral preparation methods. Food Chem. 135, 1028–1035 (2012). https://doi.org/10.1016/j.foodchem.2012.05.038

    Article  CAS  PubMed  Google Scholar 

  45. R. Mohd Salleh, S.Y. Lai, Effects of drying, fermented and unfermented tea of Ocimum tenuiflorum Linn. on the antioxidant capacity. Int. Food Res. J. 20, 1601–1608 (2013)

    Google Scholar 

  46. A.K. Jaiswal, G. Rajauria, N. Abu-Ghannam, S. Gupta, Effect of different solvents on polyphenolic content, antioxidant capacity and antibacterial activity of Irish york cabbage. J. Food Biochem. 36, 344–358 (2012). https://doi.org/10.1111/j.1745-4514.2011.00545.x

    Article  CAS  Google Scholar 

  47. V.A. Mirón-Mérida, J. Yáñez-Fernández, B. Montañez-Barragán, B.E. Barragán Huerta, Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT Food Sci. Technol. 101, 167–174 (2019). https://doi.org/10.1016/j.lwt.2018.11.013

    Article  CAS  Google Scholar 

  48. A. Belay, K. Ture, M. Redi, A. Asfaw, Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem. 108(1), 310–315 (2008). https://doi.org/10.1016/j.foodchem.2007.10.024

    Article  CAS  Google Scholar 

  49. A. Farah, T. de Paulis, L.C. Trugo, P.R. Martin, Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 53(5), 1505–1513 (2005). https://doi.org/10.1021/jf048701t

    Article  CAS  PubMed  Google Scholar 

  50. R.C. Borrelli, F. Esposito, A. Napolitano, A. Ritieni, V. Fogliano, Characterization of a new potential functional ingredient: coffee silverskin. J. Agric. Food Chem. 52(5), 1338–1343 (2004). https://doi.org/10.1021/jf034974x

    Article  CAS  PubMed  Google Scholar 

  51. P.S. Murthy, M.M. Naidu, Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol. 5(3), 897–903 (2012). https://doi.org/10.1007/s11947-010-0363-z

    Article  CAS  Google Scholar 

  52. S.I. Mussatto, E.M.S. Machado, S. Martins, J.A. Teixeira, Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 4(5), 661–672 (2011). https://doi.org/10.1007/s11947-011-0565-z

    Article  CAS  Google Scholar 

  53. L. Regazzoni, F. Saligari, C. Marinello, G. Rossoni, G. Aldini, M. Carini, M. Orioli, Coffee silver skin as a source of polyphenols: high resolution mass spectrometric profiling of components and antioxidant activity. J. Funct. Foods 20, 472–485 (2016). https://doi.org/10.1016/j.jff.2015.11.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for supporting the work through College of Food and Agricultural Sciences Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Saeed Alkaltham.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkaltham, M.S., Salamatullah, A. & Hayat, K. Determination of coffee fruit antioxidants cultivated in Saudi Arabia under different drying conditions. Food Measure 14, 1306–1313 (2020). https://doi.org/10.1007/s11694-020-00378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00378-4

Keywords

Navigation