Skip to main content

Advertisement

Log in

Modulating functional and antioxidant properties of proteins from defatted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of Alcalase hydrolysis on structure and peptide profiles of garden cress (GC) (Lepidium sativum) protein concentrate was investigated. The protein hydrolysates were characterized by gel electrophoresis, emulsifying and foaming properties, and in vitro antioxidant activity. The water holding capacity, foaming, and emulsification properties were markedly improved at 10.69% degree of hydrolysis (DH). FTIR spectroscopy revealed that %DH had a significant impact on the secondary structure of protein concentrate with a higher shift of amide I and amide II bands. A significant drop in the enthalpy (ΔH) values in the DSC endothermic peaks confirmed the hydrolysis of the protein concentrate. Antioxidant activities of GC protein concentrate were greatly improved with the DH. The obtained data suggest that moderate hydrolysis can improve the functional and antioxidant properties of protein concentrate, and therefore, the obtained protein hydrolysates could be exploited as protein supplements in the dietetic foods, infant formulae, and geriatric products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Maghrani, N.A. Zeggwagh, J.B. Michel, M. Eddouks, Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats. J. Ethnopharmacol. 100, 193–197 (2005)

    PubMed  Google Scholar 

  2. E.S. Attia, A.H. Amer, M.A. Hasanein, The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res. 33(6), 901–905 (2018)

    Google Scholar 

  3. A.M. Alashi, C.L. Blanchard, R.J. Mailer, S.O. Agboola, J.A. Mawson, R.E. Aluko, Influence of enzymatic hydrolysis, pH and storage temperature on the emulsifying properties of canola protein isolate and hydrolysates. Int. J. Food Sci Technol. 53, 2316–2324 (2018)

    CAS  Google Scholar 

  4. J. Vioque, R. Sánchez-Vioque, A. Clemente, J. Pedroche, F. Millán, Partially hydrolyzed rapeseed protein isolates with improved functional properties. J Am Oil Chem Soc. 77(4), 447–450 (2000)

    CAS  Google Scholar 

  5. R.E. Aluko, E. Monu, Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci. 68, 1254–1258 (2003)

    CAS  Google Scholar 

  6. F. Behrouzian, S.M. Razavi, G.O. Phillips, Cress seed (Lepidium sativum) mucilage, an overview. Bioact. Carbohydr. Dietary Fibre. 3(1), 17–28 (2014)

    CAS  Google Scholar 

  7. A.N. Paranjape, A.A. Mehta, A study on clinical efficacy of Lepidium sativum seeds in treatment of bronchial asthma. Iran. J. Pharm. Ther. 5(1), 55 (2006)

    Google Scholar 

  8. A.H. Gilani, N.U. Rehman, M.H. Mehmood, K.M. Alkharfy, Species differences in the antidiarrheal and antispasmodic activities of Lepidium sativum and insight into underlying mechanisms. Phytother. Res. 27(7), 1086–1094 (2013)

    PubMed  Google Scholar 

  9. L.G. Angelini, E. Moscheni, G. Colonna, P. Belloni, E. Bonari, Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind. Crops Prod. 6, 313–323 (1997)

    Google Scholar 

  10. T. Bedassa, M. Andargie, M. Eshete, Genetic variability and association among yield, yield related traits and oil content in Ethiopian garden cress genotypes. J. Plant B 7, 141–149 (2013)

    Google Scholar 

  11. M. Mulla, J. Ahmed, T. Al-Sharrah, Effect of hot oven and microwave roasting on garden cress (Lepidium sativum) seed flour quality and fatty acid composition, thermal and dielectric properties of extracted oil. Int. J. Food Sci. Technol. 53(12), 2770–2776 (2018)

    CAS  Google Scholar 

  12. H. Karazhiyan, S.M. Razavi, G.O. Phillips, Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll. 25(5), 915–920 (2011)

    CAS  Google Scholar 

  13. S. Razavi, S. Naji, H. Karazhiyan, A. Koocheki, Influence of thermal treatments on textural characteristics of cress seed (Lepidium sativum) gum gel. EJEAFChe 11(03), 222–237 (2011)

    Google Scholar 

  14. A. Fahami, M. Fathi, Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocoll. 81, 31–38 (2018)

    CAS  Google Scholar 

  15. H.R. Kavousi, M. Fathi, S.A. Goli, Novel cress seed mucilage and sodium caseinate microparticles for encapsulation of curcumin: An approach for controlled release. Food Bioprod Process. 110, 126–135 (2018)

    CAS  Google Scholar 

  16. A. Gaafar, A. Morsi, H. Elghamry, Chemical, nutritional and biochemical studies of garden cress protein isolate. Nat. Sci. 11(2), 8–13 (2013)

    Google Scholar 

  17. M. Ma, Y. Ren, W. Xie, D. Zhou, S. Tang, M. Kuang, Y. Wang, S.K. Du, Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 240, 856–862 (2018)

    CAS  PubMed  Google Scholar 

  18. I.D. Nwachukwu, R.E. Aluko, A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem. 270, 25–31 (2018)

    PubMed  Google Scholar 

  19. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680 (1970)

    CAS  Google Scholar 

  20. J. Ahmed, N. Al-Ruwaih, M. Mulla, M.H. Rahman, Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT Food Sci. Technol. 91, 191–197 (2018)

    CAS  Google Scholar 

  21. S.K. Sonawane, S.S. Arya, Bioactive L. acidissima protein hydrolysates using Box-Behnken design. 3 Biotech 7, 218 (2017)

    PubMed  PubMed Central  Google Scholar 

  22. O.H. Lowry, N.J. Rosebrough, A.L.R.J. Farr, Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  Google Scholar 

  23. K.N. Pearce, J.E. Kinsella, Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food. Chem. 26(3), 716–723 (1978)

    CAS  Google Scholar 

  24. J. Miedzianka, A. Pęksa, M. Pokora, E. Rytel, A. Tajner-Czopek, A. Kita, Improving the properties of fodder potato protein concentrate by enzymatic hydrolysis. Food Chem. 159, 512–518 (2014)

    CAS  PubMed  Google Scholar 

  25. T. Aydemir, S. Becerik, Phenolic content and antioxidant activity of different extracts from Ocimum basilicum, Apium graveolens and Lepidium sativum seeds. J. Food Biochem. 35(1), 62–79 (2011)

    CAS  Google Scholar 

  26. B. Kong, Y.L. Xiong, Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food. Chem. 54(16), 6059–6068 (2006)

    CAS  PubMed  Google Scholar 

  27. C. Torres-Fuentes, M. Alaiz, J. Vioque, Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem. 134(3), 1585–1588 (2012)

    CAS  PubMed  Google Scholar 

  28. R.E. Aluko, Food protein-derived peptides: production, isolation, and purification, in Proteins in Food Processing, ed. by R.Y. Yada (Woodhead Publishing, Boca Raton, 2018), pp. 389–412

    Google Scholar 

  29. G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochem. 42(10), 1419–1428 (2007)

    CAS  Google Scholar 

  30. E. Gianazza, R. Wait, A. Sozzi, S. Regondi, D. Saco, M. Labra, E. Agradi, Growth and protein profile changes in Lepidium sativum plantlets exposed to cadmium. Environ. Exp. Bot. 59(2), 179–187 (2007)

    CAS  Google Scholar 

  31. R. Cai, A. McCurdy, B.K. Baik, Textural property of 6 legume curds in relation to their protein constituents. J. Food Sci. 67(5), 1725–1730 (2002)

    CAS  Google Scholar 

  32. P. Garcia-Mora, E. Peñas, J. Frias, C. Martínez-Villaluenga, Savinase, the most suitable enzyme for releasing peptides from lentil protein concentrates with multifunctional properties. J. Agric. Food. Chem. 62, 4166–4174 (2014)

    CAS  PubMed  Google Scholar 

  33. R.F.M. Ali, Preparation and characterization of protein isolate and biodiesel from garden cress seed. Eur. J. Chem. 4(2), 85–91 (2013)

    CAS  Google Scholar 

  34. C. van der Ven, H. Gruppen, D.B. de Bont, A.G. Voragen, Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. J. Agric. Food. Chem. 49(10), 5005–5012 (2001)

    PubMed  Google Scholar 

  35. K. Govindaraju, H. Srinivas, Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin. LWT Food Sci. Technol. 39(1), 54–62 (2006)

    CAS  Google Scholar 

  36. B. Smolinska, J. Leszczynska, Photosynthetic pigments and peroxidase activity of during assisted Hg phytoextraction. Environ. Sci. Pollut. Res. 24(15), 13384–13393 (2017)

    CAS  Google Scholar 

  37. P.S. Saravana, J.H. Choi, Y.B. Park, H.C. Woo, B.S. Chun, Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 13, 246–254 (2016)

    Google Scholar 

  38. Y. Ladjal-Ettoumi, H. Boudries, M. Chibane, A. Romero, Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophys. 11(1), 43–51 (2016)

    Google Scholar 

  39. E.C.Y. Li-Chan, C.Y. Ma, Thermal analysis of flaxseed (Linum usitatissimum) proteins by differential scanning calorimetry. Food Chem. 77(4), 495–502 (2002)

    CAS  Google Scholar 

  40. M.F. Marcone, Y. Kakuda, R.Y. Yada, Salt-soluble seed globulins of dicotyledonous and monocotyledonous plants II Structural characterization. Food. Chem. 63(2), 265–274 (1998)

    CAS  Google Scholar 

  41. A.M. Ghribi, I.M. Gafsi, A. Sila, C. Blecker, S. Danthine, H. Attia, A. Bougatef, S. Besbes, Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chem. 187, 322–330 (2015)

    Google Scholar 

  42. S.E.M. Ortiz, J.R. Wagner, Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Res. Int. 35, 511–518 (2002)

    Google Scholar 

  43. I.A. Wani, D.S. Sogi, B.S. Gill, Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram cultivars. LWT Food Sci. Technol. 60, 848–854 (2015)

    CAS  Google Scholar 

  44. S. Razmkhah, M.A. Mohammadifar, S.M.A. Razavi, M.T. Ale, Purification of cress seed (Lepidium sativum) gum: physicochemical characterization and functional properties. Carbohydr. Polym. 141, 166–174 (2016)

    CAS  PubMed  Google Scholar 

  45. J. Zhao, Y.L. Xiong, D.H. McNear, Changes in structural characteristics of antioxidative soy protein hydrolysates resulting from scavenging of hydroxyl radicals. J. Food Sci. 78(2), C152–C159 (2013)

    CAS  PubMed  Google Scholar 

  46. S.G. Wubshet, I. Måge, U. Böcker, D. Lindberg, S.H. Knutsen, A. Rieder, D.A. Rodriguez, N.K. Afseth, FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Anal. Methods 9(29), 4247–4254 (2017)

    CAS  Google Scholar 

  47. C. Radha, P.R. Kumar, V. Prakash, Preparation and characterization of a protein hydrolysate from an oilseed flour mixture. Food Chem. 106(3), 1166–1174 (2008)

    CAS  Google Scholar 

  48. C. Lara, J. Adamcik, S. Jordens, R. Mezzenga, General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011)

    CAS  PubMed  Google Scholar 

  49. M. Zia-Ul-Haq, S. Ahmad, L. Calani, T. Mazzeo, D. Del Rio, N. Pellegrini, V. De Feo, Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules 17(9), 10306–10321 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. M. Ortiz-Martinez, J.T. Otero-Pappatheodorou, S.O. Serna-Saldívar, S. García-Lara, Antioxidant activity and characterization of protein fractions and hydrolysates from normal and quality protein maize kernels. J. Cereal Sci. 76, 85–91 (2017)

    CAS  Google Scholar 

  51. A.I. Olagunju, O.S. Omoba, V.N. Enujiugha, A.M. Alashi, R.E. Aluko, Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT Food Sci. Technol. 97, 269–278 (2018)

    CAS  Google Scholar 

  52. S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18(2), 321–336 (1995)

    CAS  PubMed  Google Scholar 

  53. H.M. Chen, K. Muramoto, F. Yamauchi, K. Fujimoto, K. Nokihara, Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food. Chem. 46(1), 49–53 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Novozymes, in particular, Dr. Sibabrata Banerjee, for their generosity for providing enzymes for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrajfatema Mulla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, M., Ahmed, J. Modulating functional and antioxidant properties of proteins from defatted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis. Food Measure 13, 3257–3266 (2019). https://doi.org/10.1007/s11694-019-00248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00248-8

Keywords

Navigation