Skip to main content
Log in

Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Salvia hispanica seeds were defatted by compression and this led to an increase in their fiber and protein contents. Consumption of this fiber improves bowel function and reduces blood glucose and cholesterol levels. Given its amino acids composition, S. hispanica deffated flour can have an antioxidant effect, protect the body from free radicals, and prevent inflammatory diseases. For this study, S. hispanica seeds were pressed with 22.07% of fat, 12.62% of protein, and 36.46% of fiber (d.b.). A protein concentrate was obtained from defatted flour by alkaline solubilization and acid precipitation allowing fiber separation. The concentrate had 77.26% of protein, the isolated fiber had 72.54% of protein. The concentrate was hydrolyzed with Alcalase–Flavourzyme for up to 240 min. The obtained hydrolyzates had equal degrees of hydrolysis (p < 0.05) and molecular weight of 21.99 and 34.16 kDa, corresponding to 11S globulin fractions. The antioxidant activity was measured by β-carotene discoloration, iron reducing antioxidant power and chelation (iron and copper) in hydrolyzates. The degree of hydrolysis and the first three antioxidant analyses showed comparable values (83%). Copper chelation decreased with time (values of 54–38%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Ayerza, W. Coates, M. Lauria, Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poult. Sci. 81(6), 826–837 (2002)

    Article  CAS  Google Scholar 

  2. V. Ixtaina, S. Nolasco, M. Tomas, Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 28, 286–293 (2008)

    Article  Google Scholar 

  3. SAGARPA (Servicio de Información Agroalimentaria y Pesquera, 2016), http://www.siap.gob.mx/index.php?option=com_wrapper&view=wrapper&Itemid=350. Accessed 14 March 2016

  4. E. Reyes, A. Tecante, M. Valdivia, Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food. Chem. 107, 656–663 (2008)

    Article  Google Scholar 

  5. G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolyzates. Process Biochem. 42(10), 1419–1428 (2007)

    Article  CAS  Google Scholar 

  6. W. Coates, R. Ayerza, Commercial production of Chia in Northwestern Argentina. J. Am. Oil Chem. Soc. 75, 1417–1420 (1998)

    Article  CAS  Google Scholar 

  7. N. Mohd Ali, S. Yeap, W. Ho, B. Beh, S. Tan, S. Tan, The promising future of chia, Salvia hispanica L. BioMed Res. Int. 2012 (2012)

  8. R. Craig, J. Sons, Application for approval of whole Chia (Salvia hispánica. L) seed and ground whole chia as novel food ingredients. Advisory committee for novel foods and process. (Company David Armstrong, Ireland, 2004) pp. 1–29

    Google Scholar 

  9. J. Vázquez, J. Rosado, L. Chel, D. Betancur, Dry processing of chía (Salvia hispanica L.) flour: chemical characterization of fiber and protein. CYTA J. Food 8(2), 117–127 (2010)

    Article  Google Scholar 

  10. K. Saito, D. Hao, T. Ogawa, K. Muramoto, E. Hatakeyama, T. Yasuhara, K. Nokihara, Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51, 3668–3674 (2003)

    Article  CAS  Google Scholar 

  11. W. Pryor, D. Church, Aldehides, hydrogen peroxide, and organic radical as mediators of oxygen toxicity. Free Rad. Biol. Chem. 11, 41–46 (1991)

    Article  CAS  Google Scholar 

  12. L. Chel, V. Pérez, D. Betancur, G. Dávila., Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. J. Agric. Food. Chem. 50, 584–591, (2002)

    Article  Google Scholar 

  13. C. Mazza, H. Boccalandro, C. Giordano, D. Battista, A. Scopel, C. Ballaré, Functional significance and induction by solar radiation of ultraviolet absorbing sunscreen on field-grown soybean crops. Plant Physiol. 122, 117–125 (2000)

    Article  CAS  Google Scholar 

  14. M. Alaiz, J. Navarro, J. Girón, E. Vioque, Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. 591, 181–186 (1992)

    Article  CAS  Google Scholar 

  15. J. Hamada, Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. J. Food Sci. 65(2), 305–310 (2000)

    Article  CAS  Google Scholar 

  16. M. Yust, J. Pedroche, J. Girón, M. Alaiz, F. Millán, J. Vioque, Production of ACE inhibitory peptides by digestion of chickpea legumin with Alcalase. Food. Chem. 81, 363–369 (2003)

    Article  CAS  Google Scholar 

  17. P. Nielsen, D. Petersen, C. Damdmann, Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66, 642–646 (2001)

    Article  CAS  Google Scholar 

  18. C. Megías, M. Yust, J. Pedroche, H. Lquari, J. Girón, M. Alaiz, F. Millán, J. Vioque, Purification of an ACE inhibitory peptide after hydrolysis of sunflower protein isolates. J. Agric. Food. Chem. 52, 1928–1932 (2004)

    Article  Google Scholar 

  19. E. Pastor, R. Juan, J. Pastor, M. Alaiz, J. Vioque, Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT Food Sci. Technol. 42, 705–709 (2009)

    Article  Google Scholar 

  20. I. Benzie, J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  Google Scholar 

  21. P. Carter, Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Analyt. Biochem. 40(2), 450–458 (1971)

    Article  CAS  Google Scholar 

  22. A. Saiga, S. Tanabe, T. Nidhimura, Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food. Chem. 51(12), 3361–3667 (2003)

    Article  Google Scholar 

  23. H. Schägger, G. von Jagow, Tricine–sodium dodecil sulfate–poliacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 KDa. Anal. Biochem. 166(2), 368–379 (1987)

    Article  Google Scholar 

  24. D. Montgomery, Diseño y análisis de experimentos, 2nd edn. (Limusa Wiley, Mexico, 2005), pp. 100–102

    Google Scholar 

  25. P.G. Peiretti, F. Gai, Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. Anim. Feed Sci. Technol. 148(2), 267–275 (2009)

    Article  CAS  Google Scholar 

  26. R. Ayerza, W. Coates, The omega-3 enriched eggs: the influence of dietary linolenic fatty acid source combination on egg production and composition. Can. J. Anim. Sci. 81, 355–362 (2001)

    Article  CAS  Google Scholar 

  27. M. Capitani, V. Spotorno, S. Nolasco, M. Tomás, Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT Food Sci. Technol. 45(1), 94–102 (2012)

    Article  CAS  Google Scholar 

  28. J. Pedroche, M. Yust, J. Girón, M. Alaiz, F. Millán, J. Vioque, Utilization of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. J. Sci. Food Agric. 960–964 (2002)

  29. M. Perez, M. Serra, M. Del Rio, Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39(1), 84–92 (2006)

    Article  Google Scholar 

  30. H. Korhonen, A. Pihlanto, Bioactive peptides: Production and functionality. Int. Dairy J. 16, 945–960 (2006)

    Article  CAS  Google Scholar 

  31. A. Papadopoulou, R. Frazier, Characterization of protein-polyphenol interactions. Trends Food Sci. Technol. 15(3–4), 186–190 (2004)

    Article  CAS  Google Scholar 

  32. L. Xu, L. Diosady, Interactions between canola proteins and phenolic compounds in aqueous media. Food Res. Int. 33(9), 725–731 (2000)

    Article  CAS  Google Scholar 

  33. FAO, Energy and Protein Requirements. (FAO/WHO/UNU, Geneva, 1985)

    Google Scholar 

  34. G. Schaafsma, The protein digestibility–corrected amino acid score. J. Nutr. 130(7), 1865S–1867S (2000)

    Article  CAS  Google Scholar 

  35. C. Megías, J. Pedroche, M. Yust, M. Alaíz, J. Girón, F. Millán, J. Vioque, Affinity purification of copper-chelating peptides fron sunflower protein hydrolyzates. J. Agric. Food Chem. 55(16), 6509–6514 (2007)

    Article  Google Scholar 

  36. J. Carrasco, A. Hernández, C. Jiménez, C. Jacinto, M. Alaiz, J. Girón, G. Dávila, Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolyzates. Food Chem. 135(3), 1789–1795 (2012)

    Article  Google Scholar 

  37. B. Wroblewska, M. Karamac, R. Amarowicz, A. Szymkiewicz, A. Troszynka, E. Kubicka, Inmunoreactive properties of peptide fractions of cow whey milk proteins alter enzymatic hidrolysis. Int. J. Food Sci. Technol. 39, 839–850 (2004)

    Article  CAS  Google Scholar 

  38. A. Dávalos, M. Miguel, B. Bartolomé, R. López-Fandiño, Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolisis. J. Food Protect. 67, 1939–1944 (2004)

    Article  Google Scholar 

  39. R. Eisenthal, M. Danson, (eds.), Enzyme Assays, 2nd edn. Practical Approach Series; 257 (Oxford University Press, 2002), pp. 20–22

  40. I. Salazar, C. Segura, L. Chel, D. Betancur, in Scientific, Health and Social Aspects of the Food Industry, ed. by B. Valdez. Antihypertensive and antioxidant effects of functional foods containing chia protein hydrolyzates, (InTech, Rijeka, 2012) ISBN 978-953-307-916-5, pp. 381–398

    Google Scholar 

  41. L. Chel, M. Domínguez, A. Martínez, G. Dávila, D. Betancur, Lima bean (Phaseolus lunatus) protein hydrolyzates with ACE-I inhibitory activity. Food Nutr. Sci. 3(4), 511–521 (2012)

    Article  Google Scholar 

  42. D. Marrufo, M. Segura, L. Chel, D. Betancur, Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolyzates with biological activity. Food. Chem. 138(1), 77–83 (2013)

    Article  Google Scholar 

  43. M. Sandoval, O. Paredes, Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 61(1), 193–201 (2012)

    Article  Google Scholar 

  44. D. Doucet, D.E. Otter, S.F. Gauthier, E.A. Foegeding, Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. J. Agric. Food. Chem. 51(21), 6300–6308 (2003)

    Article  CAS  Google Scholar 

  45. X. Peng, B. Kong, X. Xia, Q. Liu, Reducing and radical-scavenging activities of whey protein hydrolyzates prepared with Alcalase. Int. Diary J. 20(5), 360–365 (2010)

    Article  CAS  Google Scholar 

  46. L. Zhu, J. Chen, X. Tang, Y. Xiong, Reducing, radical scavenging, and chelation properties of in vitro digests of Alcalase-treated zein hydrolyzate. J. Agric. Food Chem. 56, 2714–2721 (2008)

    Article  CAS  Google Scholar 

  47. T. Chuang-He, W. Xiang-Sheng, Y. Xiao-Quan, Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolyzates. Food Chem. 114(4), 1484–1490 (2009)

    Article  Google Scholar 

  48. K. Zhu, H. Zhou, H. Quian, Antioxidant and free radical-scavenging activities of wheat germ proteins hydrolyzates (WGPH) prepared with Alcalase. Process Biochem 41(6), 1296–1302 (2006)

    Article  CAS  Google Scholar 

  49. B. Kong, Y. Xiong, Antioxidant activity of zein hydrolyzates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54, 6059–6068 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Chel-Guerrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chim-Chi, Y., Gallegos-Tintoré, S., Jiménez-Martínez, C. et al. Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates. Food Measure 12, 323–331 (2018). https://doi.org/10.1007/s11694-017-9644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9644-9

Keywords

Navigation