Skip to main content
Log in

A Gaussian-based kernel Fisher discriminant analysis for electronic nose data and applications in spirit and vinegar classification

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fisher discriminant analysis (FDA) is a very useful pattern recognition technique widely used in electronic nose system (e-nose). However, due to its linear characteristic, the classification problems of multi-class and high-dimensional e-nose data cannot be handled effectively. Therefore, a Gaussian-based kernel FDA (KFDA) method is proposed to solve multi-class and high-dimensional classification problems of complex samples such as food classification using e-nose. The key point of the method is how to determine the Gaussian kernel parameter. Firstly, according to distance discriminant analysis viewpoint, a desired kernel matrix adapted to Gaussian kernel function can be given successfully. Secondly, an evaluation function based on Euclidean distance is established for measuring the degree of approximation between actual kernel matrix containing an unknown Gaussian kernel parameter and the desired kernel matrix so as to get an optimal solution of the parameter, and then the actual kernel matrix can be definitely determined. Finally, the principal component analysis (PCA) for the actual kernel matrix is carried out. Meanwhile, FDA for the principal component matrix generated by PCA is also implemented in succession, and the KFDA is completed. Six kinds of Chinese spirit and six kinds of Chinese vinegar samples as two classification applications were respectively carried out accurately with the KFDA method; and the KFDA method is tested to be very simple and effective. The KFDA method may be promising for complex samples classification dataset of e-nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco, Drift compensation of gas sensor array data by Orthogonal Signal Correction. Chemom. Intell. Lab. 100, 28–35 (2010)

    Article  CAS  Google Scholar 

  2. A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens. Actuators B Chem. 146, 502–506 (2010)

    Article  CAS  Google Scholar 

  3. A. Loutfi, S. Coradeschi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Electronic noses for food quality: a review. J. Food Eng. 144, 103–111 (2015)

    Article  CAS  Google Scholar 

  4. X. Hong, J. Wang, G. Qi, Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemom. Intell. Lab. 133, 17–24 (2014)

    Article  CAS  Google Scholar 

  5. Z. Xu, X. Shi, S. Lu, Integrated sensor array optimization with statistical evaluation. Sens. Actuators B Chem. 149, 239–244 (2010)

    Article  CAS  Google Scholar 

  6. L. Zhang, F. Tian, G. Pei, A novel sensor selection using pattern recognition in electronic nose. Measurement 54, 31–39 (2014)

    Article  CAS  Google Scholar 

  7. M. Zuppa, C. Distante, P. Siciliano, K.C. Persaud, Drift counteraction with multiple self-organising maps for an electronic nose. Sens. Actuators B Chem. 98, 305–317 (2004)

    Article  CAS  Google Scholar 

  8. D. Cao, Y. Liang, Q. Xu, Q. Hu, L. Zhang, G. Fu, Exploring nonlinear relationships in chemical data using kernel-based methods. Chemom. Intell. Lab. 107, 106–115 (2011)

    Article  CAS  Google Scholar 

  9. H. Peng, B. Li, X. Luo, J. Wang, Z. Zhang, A learning-based audio watermarking scheme using kernel Fisher discriminant analysis. Digit Signal Process 23, 382–389 (2013)

    Article  Google Scholar 

  10. R. Khemchandani, Jayadeva, S. Chandra, Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. Eur. J. Oper. Res. 203, 692–697 (2010)

    Article  Google Scholar 

  11. S. He, P. Pan, L. Dai, H. Wang, J. Liu, Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology 171–172, 30–41 (2012)

    Article  Google Scholar 

  12. L. Zhang, F.-C. Tian, A new kernel discriminant analysis framework for e-nose recognition. Anal. Chim. Acta 816, 8–17 (2014)

    Article  CAS  Google Scholar 

  13. J. Liu, F. Zhao, Y. Liu, Learning kernel parameters for kernel Fisher discriminant analysis. Pattern Recogn. Lett. 34, 1026–1031 (2013)

    Article  CAS  Google Scholar 

  14. K. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to kernel-based learning algorithms. IEEE T. Neural Netw. 12, 181–201 (2001)

    Article  Google Scholar 

  15. I. Rodriguez-Lujan, C. Santa Cruz, R. Huerta, On the equivalence of kernel Fisher discriminant analysis and kernel quadratic programming feature selection. Pattern Recogn. Lett. 32, 1567–1571 (2011)

    Article  Google Scholar 

  16. A. Diaf, B. Boufama, R. Benlamri, Non-parametric Fisher’s discriminant analysis with kernels for data classification. Pattern Recogn. Lett. 34, 552–558 (2013)

    Article  Google Scholar 

  17. A.R. Teixeira, A.M. Tome, K. Stadlthanner, E.W. Lang, KPCA denoising and the pre-image problem revisited. Digit Signal Process 18, 568–580 (2008)

    Article  Google Scholar 

  18. J. Yang, Z. Jin, J.Y. Yang, D. Zhang, A.F. Frangi, Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recogn. 37, 2097–2100 (2004)

    Article  Google Scholar 

  19. Y. Xiao, H. Wang, L. Zhang, W. Xu, Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection. Knowl.-Based Syst. 59, 75–84 (2014)

    Article  CAS  Google Scholar 

  20. Z. Zhu, Z. Song, Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis. Chem. Eng. Res. Des. 88, 936–951 (2010)

    Article  CAS  Google Scholar 

  21. D. You, O.C. Hamsici, A.M. Martinez, Kernel optimization in discriminant analysis. IEEE T. Pattern Anal. 33, 631–638 (2011)

    Article  Google Scholar 

  22. T.P. Centeno, N.D. Lawrence, Optimising kernel parameters and regularization coefficients for non-linear discriminant analysis. J. Mach. Learn. Res. 7, 455–491 (2006)

    Google Scholar 

  23. P. Chudzian, Evaluation measures for kernel optimization. Pattern Recogn. Lett. 33, 1108–1116 (2012)

    Article  Google Scholar 

  24. K. Wu, S. Wang, Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn. 42, 710–717 (2009)

    Article  Google Scholar 

  25. C.H. Wu, G.H. Tzeng, R.H. Lin, A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 36, 4725–4735 (2009)

    Article  Google Scholar 

  26. Y. Yin, X. Tian, Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution. Sens. Actuators B Chem. 124, 393–397 (2007)

    Article  CAS  Google Scholar 

  27. Y. Yin, H. Yu, B. Chu, Y. Xiao, A sensor array optimization method of electronic nose based on elimination transform of Wilks statistic for discrimination of three kinds of vinegars. J. Food Eng. 127, 43–48 (2014)

    Article  CAS  Google Scholar 

  28. Y. Yin, B. Chu, H. Yu, Y. Xiao, A selection method for feature vectors of electronic nose signal based on wilks Λ–statistic. J. Food Meas. Charact. 8, 29–35 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 31571923, the authors acknowledge the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Hao, Y., Bai, Y. et al. A Gaussian-based kernel Fisher discriminant analysis for electronic nose data and applications in spirit and vinegar classification. Food Measure 11, 24–32 (2017). https://doi.org/10.1007/s11694-016-9367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9367-3

Keywords

Navigation