Skip to main content
Log in

Extraction of phenolic compounds from olive-waste cake using ultrasonic process

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Health hazards of artificial antioxidants have motivated use of natural phenolic compounds in food industry. Olive-waste cake, resulted from olive oil extraction, is accounted as a rich resource of phenolic compounds. In this study, extraction of phenolic compounds through sonication process was investigated. In this respect, effects of sample weight to solvent ratio (in three levels of 1:10, 1:30 and 1:50) and sonication time (in three levels of 10, 30 and 50 min) were evaluated on total phenolic content, antioxidant activity and color parameters of L* and a* of the extracts. Results showed that changing the independent variable of sample weight to solvent ratio from 1:50 to 1:10 results in a significant increase in total phenolic content and antioxidant activity parameters (P ≤ 0.01) and a significant reduction of L* color parameter (P ≤ 0.01) of the extracts. Also, the results of this study demonstrated that prolonging sonication time from 10 to 50 min provides significant increase of L* color parameter (P ≤ 0.01) and insignificant enhancement of total phenolic content and antioxidant activity (P > 0.05) while it reduces a* color parameter of the extracts, significantly (P ≤ 0.01). Based on Fourier transform infrared spectra of the treatments, ultrasound waves do not impose any destructive impact on functional groups of the extracts. Moreover, scanning electron microscopy images of the olive-waste cake powders showed higher porosity in the microstructure of the sonicated solid residues, specifically when longer ultrasonic times were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Djilas, J. Canadanovic-Brunet, G. Cetkovic, Antioxidants in food. Hem. Ind. 56, 105–112 (2002)

    Article  CAS  Google Scholar 

  2. D. Bera, D. Lahiri, A. Nag, Studies on a natural antioxidant for stabilization of edible oil and comparison with synthetic antioxidants. J. Food Eng. 74, 542–545 (2006)

    Article  CAS  Google Scholar 

  3. A. Tafesh et al., Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evid. Based Complement. Altern. Med. 2011, 1–9 (2011)

    Article  Google Scholar 

  4. F. Alagna et al., Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 12, 162 (2012)

    Article  CAS  Google Scholar 

  5. F. Aouidi et al., Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Ind. Crops Prod. 37, 292–297 (2012)

    Article  CAS  Google Scholar 

  6. F. Mazzotti et al., Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry and isotope dilution method. Food Chem. 135, 1006–1010 (2012)

    Article  CAS  Google Scholar 

  7. E. Marco, De et al., Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104, 858–867 (2007)

    Article  Google Scholar 

  8. N.S. Kumar, K. Min, Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem. Eng. J. 168, 562–571 (2011)

    Article  CAS  Google Scholar 

  9. J. Azmir et al., Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 117, 426–436 (2013)

    Article  CAS  Google Scholar 

  10. Y. Picó, Ultrasound-assisted extraction for food and environmental samples. TrAC Trends Anal. Chem. 43, 84–99 (2013)

    Article  Google Scholar 

  11. Y. Tao, Z. Zhang, D.-W. Sun, Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature. Ultrason. Sonochem. 21, 1461–1469 (2014)

    Article  CAS  Google Scholar 

  12. M.C. Herrera, M.D. Luque de Castro, Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal. Bioanal. Chem. 379, 1106–1112 (2004)

    Article  CAS  Google Scholar 

  13. G. Zu et al., Ultrasound-assisted extraction of carnosic acid and rosmarinic acid using ionic liquid solution from rosmarinus officinalis. Int. J. Mol. Sci. 13, 11027–11043 (2012)

    Article  CAS  Google Scholar 

  14. C. Carrera, A. Ruiz-rodríguez, M. Palma, C.G. Barroso, Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 732, 100–104 (2012)

    Article  CAS  Google Scholar 

  15. C. Corbin et al., Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 26, 176–185 (2015)

    Article  CAS  Google Scholar 

  16. J. Wang, B. Sun, Y. Cao, Y. Tian, X. Li, Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106, 804–810 (2008)

    Article  CAS  Google Scholar 

  17. S. Şahin, R. Şamli, Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 20, 595–602 (2013)

    Article  Google Scholar 

  18. C. Soto, E. Caballero, E. Pérez, M. Elvira, M.E. Zúñiga, Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food Bioprod. Process 92, 328–333 (2014)

    Article  CAS  Google Scholar 

  19. S. Chanda, R. Dave, In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 3, 981–996 (2009)

    Google Scholar 

  20. A. El-Abbassi, H. Kiai, A. Hafidi, Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132, 406–412 (2012)

    Article  CAS  Google Scholar 

  21. S. Haji Heidari, S. Taghian Dinani, The study of ultrasound-assisted enzymatic extraction of oil from peanut seeds using response surface methodology. Eur. J. Lipid Sci. Technol. (2017). https://doi.org/10.1002/ejlt.201700252

    Google Scholar 

  22. S. Taghian Dinani, N. Hamdami, M. Shahedi, M. Havet, D. Queveau, Influence of the electrohydrodynamic process on the properties of dried button mushroom slices: a differential scanning calorimetry (DSC) study. Food Bioprod. Process 95, 83–95 (2015)

    Article  Google Scholar 

  23. Y. Sun, G. Ma, X. Ye, Y. Kakuda, R. Meng, Stability of all-trans-β-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrason. Sonochem. 17, 654–661 (2010)

    Article  CAS  Google Scholar 

  24. D.L. Luthria, Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. J. Funct. Foods 4, 842–850 (2012)

    Article  CAS  Google Scholar 

  25. K. Ghafoor, Y.H. Choi, J.Y. Jeon, I.H. Jo, Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 57, 4988–4994 (2009)

    Article  CAS  Google Scholar 

  26. M. Brenes-Balbuena, P. Garcia-Garcia, A. Garrido-Fernandez, Phenolic compounds related to the black color formed during the processing of ripe olives. J. Agric. Food Chem. 40, 1192–1196 (1992)

    Article  CAS  Google Scholar 

  27. R.D.A. Amaral, B.C. Benedetti, M. Pujola, I. Achaerandio, M.L. Bachelli, B. Effect of ultrasound on quality of fresh-cut potatoes during refrigerated storage. Food Eng. Rev. 7, 176–184 (2015)

    Article  Google Scholar 

  28. M.G.M. Costa et al., High-intensity ultrasound processing of pineapple juice. Food Bioprocess Technol. 6, 997–1006 (2013)

    Article  CAS  Google Scholar 

  29. A.B. Cabezas-Serrano, M.L. Amodio, R. Cornacchia, R. Rinaldi, G. Colelli, Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 53, 138–144 (2009)

    Article  CAS  Google Scholar 

  30. A.O. Adekunte, B.K. Tiwari, P.J. Cullen, A.G.M. Scannell, C.P. O’Donnell, Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 122, 500–507 (2010)

    Article  CAS  Google Scholar 

  31. B. Saberi, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett, C.E. Stathopoulos, Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. Int. J. Biol. Macromol. 104, 345–359 (2017)

    Article  CAS  Google Scholar 

  32. T. Suganya, S. Renganathan, Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour. Technol. 107, 319–326 (2012)

    Article  CAS  Google Scholar 

  33. X. Lu, C.F. Ross, J.R. Powers, D.E. Aston, B.A. Rasco, Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance–Fourier transformed infrared spectroscopy. J. Agric. Food Chem. 59, 5215–5221 (2011)

    Article  CAS  Google Scholar 

  34. X.N. Lu, C.F. Ross, J.R. Powers, B.A. Rasco, Determination of quercetins in onion (Allium cepa) using infrared spectroscopy. J. Agric. Food Chem. 59, 6376–6382 (2011)

    Article  CAS  Google Scholar 

  35. J. He, L.E. Rodriguez-Saona, M.M. Giusti, Midinfrared spectroscopy for juice authentication-rapid differentiation of commercial juices. J. Agric. Food Chem. 55, 4443–4452 (2007)

    Article  CAS  Google Scholar 

  36. X. Lu et al., Infrared and Raman spectroscopic studies of the antimicrobial effects of garlic concentrates and diallyl constituents on foodborne pathogens. Anal. Chem. 83, 4137–4146 (2011)

    Article  CAS  Google Scholar 

  37. H. Sohrabi, E. Ameri, Adsorption equilibrium, kinetics, and thermodynamics assessment of the removal of the reactive red 141 dye using sesame waste. Desalin. Water Treat. 57, 18087–18098 (2016)

    Article  CAS  Google Scholar 

  38. X. Lu et al., Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 129, 637–644 (2011)

    Article  CAS  Google Scholar 

  39. M.M. Kamil, G.F. Mohamed, M.S. Shaheen, Fourier Transformer Infrared spectroscopy for quality assurance of tomato products. J. Am. Sci. 27, 253–260 (2011)

    Google Scholar 

  40. K. Sinha, P. Saha, S. Das, Datta, Extraction of natural dye from petals of Flame of forest (Butea monosperma) flower: process optimization using response surface methodology (RSM). Dyes Pigm. 94, 212–216 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Taghian Dinani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, F., Taghian Dinani, S. Extraction of phenolic compounds from olive-waste cake using ultrasonic process. Food Measure 12, 974–981 (2018). https://doi.org/10.1007/s11694-017-9712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9712-1

Keywords

Navigation