Skip to main content
Log in

On the Typology of Relations

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Each informative character, either binary or multistate, corresponds to a tree. A simple example is a binary character absent from taxon A (state 0) and present in taxa BC (state 1). If state 0 is the root, then the corresponding tree is A(BC).

Platnick et al. (1996, p. 250).

Abstract

The possibility of undertaking matrix/optimization-free cladistic analysis is one of the most interesting ideas to emerge in the last few decades from within the field of systematics, particularly in the development of cladistics. The purpose of this paper is to design further opportunities and prospects made possible by eliminating the matrix as the primary source of data representation. The main focus of this paper is to outline a supertree approach that, if combined with the methodology of three-taxon statement analysis (3TA), may be seen as a powerful heuristic alternative to the application of conventional matrix/optimization-based methods used for the analysis of systematic data, and which currently forms the mainstream of contemporary phylogenetics. Using the average consensus technique as an example, we demonstrate explicitly that methods of construction of supertrees may be applied to the array of three-taxon statements (3TS), especially if the latter are represented initially as minimal trees, not as binary matrices, as was originally proposed. The 3TA-average consensus procedure recognizes solely ‘reversal’-based clades and is also free from the potential issues of 3TA, such as the data distortion due to inability to handle putative reversals. Thus the main benefit of this new approach over the traditional one is its accuracy and advantages when implementing the Hennigian views on the cladistic analysis that states that all characters must be a priori polarized before the best fitting tree is found. We also found that the average consensus technique (as well as other median supertree calculation techniques) is purely typological and we stressed that this simple point had never been mentioned before. We proposed that the average consensus of 3TSs (as well as any median consensus of 3TSs) may be viewed as a median type and the extended procedure of the traditional 3TA may be treated as a typology of the relations. The connection between median type and phylogeny may be established only indirectly. The heuristic scientific typology may be derived within a completely metaphysics-free context. Goethe’s idea of “Urphenomenon” and Max Weber’s “Ideal Types” are mentioned as examples of heuristic metaphysical-free typological frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre-Fernández, G., Barnes, L. G., Aranda-Manteca, F. J., & Fernández-Rivera, J. R. (2009). Protoglobicephala mexicana, a new genus and species of Pliocene fossil dolphin (Cetacea; Odontoceti; Delphinidae) from the Gulf of California. Boletín de la Sociedad Geológica Mexicana, 61(2), 245–265.

    Article  Google Scholar 

  • Ax, P. (1987). The phylogenetic system. The systematization of organisms on the basis of their phylogenesis. Chichester: Wiley.

    Google Scholar 

  • Baum, B. R. (1992). Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon, 41(1), 3–10.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. (2014). An introduction to supertree construction (and partitioned phylogenetic analyses) with a view toward the distinction between gene trees and species trees. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 49–76). Berlin: Springer.

    Chapter  Google Scholar 

  • Bininda-Emonds, O. R. P. (2004). The evolution of supertrees. Trends in Ecology & Evolution, 19(6), 315–322.

    Article  Google Scholar 

  • Brady, R. H. (1982). Theoretical issues and “pattern cladists”. Systematic Zoology, 31(3), 286–291.

    Article  Google Scholar 

  • Brady, R. H. (1985). On the independence of systematics. Cladistics, 1(2), 113–126.

    Article  Google Scholar 

  • Brower, A. V. Z. (2015). Transformational and taxic homology revisited. Cladistics, 31(2), 197–201.

    Article  Google Scholar 

  • Bruen, T. C., & Bryant, D. (2008). Parsimony via consensus. Systematic Biology, 57(2), 251–256.

    Article  PubMed  Google Scholar 

  • Bruun, H. H. (2001). Weber on Rickert: From value relation to ideal type. Max Weber Studies, 1(2), 138–160.

    Google Scholar 

  • Burger, T. (1978). Max Weber’s theory of concept formation: History, laws and ideal types. Duran: Duke University Press.

    Google Scholar 

  • Cantino, P. D., & de Queiroz, K. (2010). PhyloCode: A phylogenetic code of biological nomenclature. Version 4c.

  • Cao, N., Zaraguëta-Bagils, R., & Vignes-Lebbe, R. (2007). Hierarchical representation of hypotheses of homology. Geodiversitas, 29(1), 5–15.

    Google Scholar 

  • Carine, M. A., & Scotland, R. W. (1999). Taxic and transformational homology: Different ways of seeing. Cladistics, 15, 121–129.

    Google Scholar 

  • Carpenter, J. C. (1987). Cladistics of cladists. Cladistics, 3(4), 363–375.

    Article  Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Eulenstein, O., & Fernandez-Baca, D. (2004). Rainbow: A toolbox for phylogenetic supertree construction and analysis. Bioinformatics, 20(16), 2872–2873.

    Article  PubMed  CAS  Google Scholar 

  • Cotton, J. A., & Page, R. D. M. (2004). Tangled trees from molecular markers: Reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 107–125). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Creevey, C. (2004). Clann: Construction of supertrees and exploration of phylogenomic information from partially overlapping datasets (version 3.0.0), user manual. 3.0 ed. Manchester, Great Britan: The lab of James McInerney. http://chriscreevey.github.io/clann/.

  • Creevey, C. J., & McInerney, J. O. (2009). Trees from trees: Construction of phylogenetic supertrees using Clann. In D. Posada (Ed.), Bioinformatics for DNA Sequence Analysis, (pp. 139–161). Humana Press-Springer-Nature, Switzerland.

    Chapter  Google Scholar 

  • Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum evolution principle. Journal of Computational Biology, 9(5), 687–705.

    Article  PubMed  CAS  Google Scholar 

  • Ebach, M. C. (2005). Anschauung and the Archetype: The role of Goethe’s delicate empiricism in comparative biology. Janus Head, 8(1), 254–270.

    Google Scholar 

  • Ebach, M. C. (2017). “Mehr Licht!” Anschauung and its fading role in Morphology. In: J. F. G. Toni, R. Richter, & P. Schilperoord (Eds.), Evolving morphology (pp. 22–37). Dornach.

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • Farris, J. S. (1997). Cycles. Cladistics, 13(1–2), 131–144.

    Google Scholar 

  • Farris, J. S., & Kluge, A. G. (1998). A/the brief history of three–taxon analysis. Cladistics, 14(4), 349–362.

    Article  Google Scholar 

  • Felsenstein, J. (1989). PHYLIP – phylogeny inference package (Version 3.2). Cladistics, 5(2), 164–166.

    Google Scholar 

  • Felsenstein, J. (2004). Inferring phylogenies (2nd ed.). Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Goloboff, P. A., & Pol, D. (2002). Semi-strict supertrees. Cladistics, 18(5), 514–525.

    Article  Google Scholar 

  • Goremykin, V. V., Nikiforova, S. V., Biggs, P. J., Zhong, B., Delange, P., Martin, W., et al. (2013). The evolutionary root of flowering plants.. Systematic Biology, 62(1), 50–61.

    Article  PubMed  Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Grand, A., Corvez, A., Duque Velez, L. M., & Laurin, M. (2013). Phylogenetic inference using discrete characters: Performance of ordered and unordered parsimony and of three-item statements. Biological Journal of the Linnean Society, 110(4), 914–930.

    Article  Google Scholar 

  • Heincke, F. (1898). Naturgeschichte des Herings. Teil I. Die Lokalformen und die Wanderungen des Heringes in den europaischen Meeren. In Abhandlungen des Deutschen Seefischerei-Vereins (Bd. II). Berlin: Verlag von Otto Sale. https://babel.hathitrust.org/cgi/pt?id=chi.23758345;view=1up;seq=7.

  • Hennig, W. (1966). Phylogenetic systematics (D. Davis, & R. Zangerl, Trans.). Urbana: University of Illinois Press.

    Google Scholar 

  • Hobbs, C. R., & Baldwin, B. G. (2013). Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae). Journal of Biogeography, 40(3), 442–454.

    Article  Google Scholar 

  • Kitching, I. J., Forey, P. L., Humphries, C. J., & Williams, D. M. (1998). Cladistics: The theory and practice of parsimony analysis (Vol. 11, 2nd ed.). Oxford: Systematics Association Publication.

    Google Scholar 

  • Kluge, A. G. (1994). Moving targets and shell games. Cladistics, 10(4), 403–413.

    Article  Google Scholar 

  • Kluge, A. G., & Farris, J. S. (1999). Taxic homology equals overall similarity. Cladistics, 15(2), 205–212.

    Google Scholar 

  • Kuo, L.-Y., Qi, X., Ma, H., & Li, F.-W. (2018). Order-level fern plastome phylogenomics: New insights from Hymenophyllales. American Journal of Botany, 105, 1545–1555.

    Article  PubMed  Google Scholar 

  • Lapointe, F. J., & Cucumel, G. (1997). The average consensus procedure: Combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology, 46(2), 306–312.

    Article  Google Scholar 

  • Lapointe, F. J., & Levasseur, C. (2004). Everything you always wanted to know about the average consensus, and more. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 87–105). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lapointe, F. J., Wilkinson, M., & Bryant, D. (2003). Matrix representations with parsimony or with distances: Two sides of the same coin? Systematic Biology, 52(6), 865–868.

    PubMed  Google Scholar 

  • Laurin, M., de Queiroz, K., Cantino, P. D., Cellinese, N., & Olmstead, R. (2005). The PhyloCode, types, ranks, and monophyly: A response to Pickett. Cladistics, 21(5), 605–607.

    Article  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2011). Mesquite: A modular system for evolutionary analysis. Version 3.01. Retrieved from http://mesquiteproject.org/.

  • Mavrodiev, E. V. (2015). Three-taxon analysis can always successfully recognize groups based on putative reversals. PeerJ PrePrints, 3, e1206. https://doi.org/10.7287/peerj.preprints.979v1.

    Article  Google Scholar 

  • Mavrodiev, E. V. (2016). Dealing with propositions, not with the characters: The ability of three-taxon statement analysis to recognize groups based solely on ‘reversals’, under the maximum-likelihood criteria. Australian Systematic Botany, 29(2), 119–125.

    Article  Google Scholar 

  • Mavrodiev, E. V., Dell, C., & Schroder, L. (2017). A laid-back trip through the Hennigian forests. PeerJ, 5, e3578, https://doi.org/10.7717/peerj.3578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavrodiev, E. V., & Madorsky, A. (2012). TAXODIUM Version 1.0: A simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data. PLoS ONE, 7(11), e48813. https://doi.org/10.1371/journal.pone.0048813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mavrodiev, E. V., Martinez-Azorin, M., Dranishnikov, P., & Crespo, M. B. (2014). At least 23 genera instead of one: The case of Iris L. s.l. (Iridaceae). PLoS ONE 9(8), e106459. https://doi.org/10.1371/journal.pone.0106459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavrodiev, E. V., & Yurtseva, O. V. (2017). “A character does not make a genus, but the genus makes the character”: Three-taxon statement analysis and intuitive taxonomy. European Journal of Taxonomy, 377, 1–7.

    Google Scholar 

  • Mikoleit, G. (2004). Phylogenetische Systematik der Wirbeltiere. Pfeil, Dr. Friedrich.

  • Nelson, G. (1989). Cladistics and evolutionary models. Cladistics, 5(3), 275–289.

    Article  Google Scholar 

  • Nelson, G. 1996. Nullius in verba. New York, Self-published.

    Google Scholar 

  • Nelson, G. (2004). Cladistics: Its arrested development. In D. M. Williams, & P. L. Forey (Eds.), Milestones in systematics (pp. 127–148). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Nelson, G., & Ladiges, P. Y. (1994). Three-item consensus: Empirical test of fractional weighting. In R. W. Scotland, D. J. Siebert, & D. M. Williams (Eds.), Models in phylogeny reconstruction (Systematics Association, special volume series) (Vol. 52, pp. 193–209). Oxford: Oxford University Press.

    Google Scholar 

  • Nelson, G., & Ladiges, P. Y. (1992). Information-content and fractional weight of 3-item statements. Systematic Biology, 41(4), 490–494.

    Article  Google Scholar 

  • Nelson, G., & Platnick, N. (1981). Systematics and biogeography: Cladistics and vicariance. New York: Columbia University Press.

    Google Scholar 

  • Nelson, G., & Platnick, N. I. (1991). Three-taxon statements—A more precise use of parsimony? Cladistics, 7(4), 351–366.

    Article  Google Scholar 

  • Nelson, G. J. (1970). Outline of a theory of comparative biology. Systematic Zoology, 19(4), 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, C. (1980). Cladistics. Biologist, 27, 234–240.

    Google Scholar 

  • Platnick, N. I. (1979). Philosophy and the transformation of cladistics. Systematic Zoology, 28(4), 537–546.

    Article  Google Scholar 

  • Platnick, N. I. (1993). Character optimization and weighting—Differences between the standard and three-taxon approaches to phylogenetic inference. Cladistics, 9(2), 267–272.

    Article  Google Scholar 

  • Platnick, N. I. (2012). The poverty of the PhyloCode: A reply to de Queiroz and Donoghue. Systematic Biology, 61(2), 360–361.

    Article  PubMed  Google Scholar 

  • Platnick, N. I., Humphries, C. J., Nelson, G., & Williams, D. M. (1996). Is Farris optimization perfect?: Three-taxon statements and multiple branching. Cladistics, 12(3), 243–252.

    Article  Google Scholar 

  • Powers, J. (2013). Finding Ernst Mayr’s Plato. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4B), 714–723.

    Article  PubMed  Google Scholar 

  • Ragan, M. A. (1992). Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution, 1(1), 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A. (2012). FigTree Version. 1.4.3. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK. University of Edinburgh, Institute of Evolutionary Biology. Retrieved from http://tree.bio.ed.ac.uk/software/figtree/.

  • Ranwez, V., Criscuolo, A., & Douzery, E. J. P. (2010). SuperTriplets: A triplet-based supertree approach to phylogenomics. Bioinformatics, 26(12), i115–i123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remane, A. (1952). Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Theoretische Morphologie und Systematik. Leipzig: Akademische Verlagsgesellschaft Geert & Portig.

    Google Scholar 

  • Rieppel, O. (2007). The metaphysics of Henning’s phylogenetic systematics: Substance, events and laws of nature. Systematics and Biodiversity, 5(4), 345–360.

    Article  Google Scholar 

  • Rieppel, O. (2013). Styles of scientific reasoning: Adolf Remane (1898–1976) and the German evolutionary synthesis. Journal of Zoological Systematics and Evolutionary Research, 51, 1–12.

    Article  Google Scholar 

  • Rieppel, O., Williams, D. M., & Ebach, M. C. (2013). Adolf Naef (1883–1949): On foundational concepts and principles of systematic morphology. Journal of the History of Biology, 46(3), 445–510.

    Article  PubMed  Google Scholar 

  • Rineau, V., Grand, A., Zaraguëta-Bagils, R., & Laurin, M. (2015). Experimental systematics: Sensitivity of cladistic methods to polarization and character ordering schemes. Contributions to Zoology, 84(2), 129–148.

    Article  Google Scholar 

  • Rineau, V., Zaraguëta-Bagils, R., & Laurin, M. (2018). Impact of errors on cladistic inference: Simulation-based comparison between parsimony and three-taxon analysis. Contributions to Zoology, 87(1), 25–40.

    Article  Google Scholar 

  • Schmitt, M. (2016a). Hennig, Ax, and present-day mainstream cladistics on polarizing characters. Peckiana, 11, 35–42.

    Google Scholar 

  • Schmitt, M. (2016b). How much of Hennig is in present day cladistics? In D. M. Williams, M. Schmitt, & Q. Wheeler (Eds.), The future of phylogenetic systematics: The legacy of Willi Hennig (Systematics Association, special volume series) (Vol. 86, pp. 115–127). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Siebert, D. J., & Williams, D. M. (1998). Recycled. Cladistics, 14(4), 339–347.

    Article  Google Scholar 

  • Smirnov, E. (1925). The theory of type and natural system. Zeitschrift fuer Induktive Abstammungs und Vererbungslehre (Berlin), 37, 28–66.

    Google Scholar 

  • Sokal, R. R. (1962). Typology and empiricism in taxonomy. Journal of Theoretical Biology, 3(2), 230–267.

    Article  Google Scholar 

  • Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stevens, P. F. (1983). Report of third annual Willi Hennig Society meeting. Systematic Zoology, 32(3), 285–291.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0. Sunderland: Sinauer Associates.

    Google Scholar 

  • Thorley, J. L., & Wilkinson, M. (2003). A view of supertree methods. In Janowitz, M. E. et al. (Eds.), Bioconsensus: DIMACS Working Group Meetings on Bioconsensus: October 25–26, 2000 and October 2–5, 2001, DIMACS Center, vol. 61 (pp. 185–194). American Mathematical Society.

  • Tremblay, F. (2013). Nicolai Hartmann and the metaphysical foundation of phylogenetic systematics. Biology Theory, 7(1), 56–68.

    Article  Google Scholar 

  • Waegele, J. W. (2005). Foundations of phylogenetic systematics. München: Pfeil Verlag.

    Google Scholar 

  • Watkins, J. W. (1952). Ideal types and historical explanation. The British Journal for the Philosophy of Science, 3(9), 22–43.

    Article  Google Scholar 

  • Weberling, F. (1999). Wilhelm Troll, his work and influence. Systematics and Geography of Plants, 68, 9–24.

    Article  Google Scholar 

  • Wheeler, W. (1996). Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics, 12(1), 1–9.

    Article  Google Scholar 

  • Wiesemüller, B., Rothe, H., & Hencke, W. (2003). Phylogenetische Systematik: Eine Einführung. Berlin: Springer.

    Book  Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: The theory and practice of phylogenetic systematics (2nd ed.). Hoboken: Wiley

    Book  Google Scholar 

  • Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F. J., et al. (2005a). The shape of supertrees to come: Tree shape related properties of fourteen supertree methods. Systematic Biology, 54(3), 419–431.

    Article  PubMed  Google Scholar 

  • Wilkinson, M., Cotton, J. A., & Thorley, J. L. (2004). The information content of trees and their matrix representations. Systematic Biology, 53, 989–1001.

    Article  PubMed  Google Scholar 

  • Wilkinson, M., Pisani, D., Cotton, J. A., & Corfe, I. (2005b). Measuring support and finding unsupported relationships in supertrees. Systematic Biology, 54(5), 823–831.

    Article  PubMed  Google Scholar 

  • Williams, D. M. (1994). Combining trees and combining data. Taxon, 43(3), 449–453.

    Article  Google Scholar 

  • Williams, D. M. (1996). Characters and cladograms. Taxon, 45(2), 275–283.

    Article  Google Scholar 

  • Williams, D. M. (2002). Precision and parsimony. Taxon, 51(1), 143–149.

    Article  Google Scholar 

  • Williams, D. M. (2004). Supertrees, components and three-item data. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 389–408). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2005). Drowning by numbers: Rereading Nelson’s “Nullius in Verba”. Botanical Review, 71, 415–447.

    Article  Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2006). The data matrix. Geodiversitas, 28(3), 409–420.

    Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2008). Foundations of systematics and biogeography. New York: Springer.

    Book  Google Scholar 

  • Williams, D. M., & Siebert, D. J. (2000). Characters, homology and three-item analysis. In R. W. Scotland & R. T. Pennington (Eds.), Homology and systematics: Coding characters for phylogenetic analysis (Systematics Association, special volume series) (Vol. 58, pp. 183–208). Chapman and Hall: Taylor and Francis.

    Google Scholar 

  • Winsor, M. P. (2006a). Linnaeus’s biology was not essentialist. Annals of the Missouri Botanical Garden, 93(1), 2–7.

    Article  Google Scholar 

  • Winsor, M. P. (2006b). The creation of the essentialism story: An exercise in metahistory. History and Philosophy of the Life Sciences, 28(2), 149–174.

    PubMed  Google Scholar 

  • Witteveen, J. (2015a). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 1 of 2). Studies in History and Philosophy of Biological and Biomedical Sciences, 54, 20–33.

    Article  PubMed  Google Scholar 

  • Witteveen, J. (2015b). Naming and contingency: The type method of biological taxonomy. Biology & Philosophy, 30(4), 569–586.

    Article  Google Scholar 

  • Witteveen, J. (2016). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 2 of 2). Studies in History and Philosophy of Biological and Biomedical Sciences, 57, 96–105.

    Article  PubMed  Google Scholar 

  • Yurtseva, O. V., Severova, E. E., & Mavrodiev, E. V. (2017). Persepolium (Polygoneae): A new genus in Polygonaceae based on conventional maximum parsimony and three-taxon statement analyses of a comprehensive morphological dataset. Phytotaxa, 314(2), 151–194.

    Article  Google Scholar 

  • Zaraguëta-Bagils, R., Ung, V., Grand, A., Vignes-Lebbe, R., Cao, N., & Ducasse, J. (2012). LisBeth: New cladistics for phylogenetics and biogeography. Comptes Rendus Palevol, 11(8), 563–566.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Michel Laurin (CNRS/MNHN/UPMC, Sorbonne Universités, Paris, France), Dr. Valentin Rineau (CNRS/MNHN/UPMC, Sorbonne Universités, Paris, France) and an anonymous reviewer for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V. Mavrodiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrodiev, E.V., Williams, D.M. & Ebach, M.C. On the Typology of Relations. Evol Biol 46, 71–89 (2019). https://doi.org/10.1007/s11692-018-9468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-018-9468-5

Keywords

Navigation