Skip to main content

Tangled Tales from Multiple Markers

Reconciling conflict between phylogenies to build molecular supertrees

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Supertree methods combine information from multiple phylogenies into a larger, composite phylogeny. When there is no disagreement between the source phylogenies, constructing the supertree is straightforward. But in the (nearly universal) presence of disagreement between source trees, supertree methods seek to either represent or resolve this conflict. Existing supertree methods that resolve conflict between source trees do so in an ad hoc way. Gene tree parsimony is a supertree method that can combine molecular phylogenies for overlapping taxon sets and interprets conflict between these phylogenies in a biologically meaningful way. We review the method and discuss the relationship between gene tree parsimony and other supertree methods. Finally, we suggest that a better understanding of the causes of conflict between source trees should lead to appropriate ways of resolving this conflict when constructing supertrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. 1981. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Siam Journal of Computing 10:405–421.

    Article  Google Scholar 

  • Arvestad, L., Berglund, A.-C., Lagergren, J., and Sennblad, B. 2003. Bayesian gene/species tree reconciliation and orthology analysis using Mcmc. Bioinformatics 19:i7–i15.

    Article  PubMed  Google Scholar 

  • Avedisov, S. N., Rogozin, I. B., Koonin, E. V., and Thomas, B. J. 2001. Rapid evolution of a cyclin A inhibitor gene, roughex, in Drosophila. Molecular Biology and Evolution 18:2110–2118.

    Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Betran, E. and Ashburner, M. 2000. Duplication, dicistronic transcription, and subsequent evolution of the Alcohol dehydrogenase and Alcohol dehydrogenase-related genes in Drosophila. Molecular Biology and Evolution 17:1344–1352.

    Article  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497 – 508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. R. 1981. Hennig’s parasitological method: a proposed solution. Systematic Zoology 30:229–249.

    Article  Google Scholar 

  • Burleigh, J. G., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2004. MRF supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 65–85. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Charleston, M. A. 1998. Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Mathematical Biosciences 149:191 – 223.

    Article  PubMed  CAS  Google Scholar 

  • Charleston, M. A. and Robertson, D. L. 2002. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Systematic Biology 51:528–535.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Diao, L., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2003. Flipping: a supertree construction method. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 135–160. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2002. Going nuclear: vertebrate phylogeny and gene family evolution reconciled. Proceedings of the Royal Society of London B 269:1555–1561.

    Article  CAS  Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2003. Gene tree parsimony vs. uninode coding for phylogenetic reconstruction. Molecular Phylogenetics and Evolution 29:298–308.

    Article  PubMed  Google Scholar 

  • Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144–163.

    Article  Google Scholar 

  • Eulenstein, O. 1997. A linear time algorithm for tree mapping. Arbeitspapiere der GMD, No. 1046.

    Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA-sequences — a maximum likelihood approach. Journal of Molecular Evolution 17:368–376.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G. 1979. Fitting the gene lineage into its species lineage: a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28:132–168.

    Article  CAS  Google Scholar 

  • Graham, R. L. and Foulds, L. R. 1982. Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computation time. Mathematical Biosciences 60:133–142.

    Article  Google Scholar 

  • Hallett, M. T. and Lagergren, J. 2000. New algorithms for the duplication-loss problem. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and M. Waterman (eds), Recomb ’00, Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, pp. 138–146. Association for Computing Machinery.

    Chapter  Google Scholar 

  • Huelsenbeck, J. P., Rannala, B., and Larget, B. 2000a. A Bayesian framework for the analysis of cospeciation. Evolution 54:352–364.

    PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., Rannala, B., and Masly, J. P. 2000b. Accommodating phylogenetic uncertainty in evolutionary studies. Science 288:2349–2350.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. and Page, R. D. M. 2002. Seabird supertrees: combining partial estimates of procellariiform phylogeny. The Auk 119:88–108.

    Google Scholar 

  • Kwiatowski, J., Skarecky, D., Bailey, K., and Ayala, F. J. 1994. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the cu,zn sod gene. Journal of Molecular Evolution 38:443–454.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, F.-J. and Levasseur, C. 2004. Everything you always wanted to know about the average consensus, and more. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 87–105. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Ma, B., Li, M., and Zhang, L. 1998. On reconstructing species trees from gene trees in term of duplications and losses. In S. Istrail, P. A. Pevzner, and M. S. Waterman (eds), Proceedings of the Second Annual International Conference on Computational Biology (Recomb 98), pp. 182–191. ACM, New York.

    Chapter  Google Scholar 

  • Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523–536.

    Article  Google Scholar 

  • Martin, A. P. and Burg, T. M. 2002. Perils of paralogy: using hsp70 genes for inferring organismal phylogenies. Systematic Biology 51:570–587.

    Article  PubMed  Google Scholar 

  • Mirkin, B., Muchnik, I., and Smith, T. F. 1996. A biologically consistent model for comparing molecular phylogenies. Journal of Computational Biology 2:493–507.

    Article  Google Scholar 

  • Page, R. D. M. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43:58–77.

    Google Scholar 

  • Page, R. D. M. 1998. Gene Tree: comparing gene and species trees using reconciled trees. Bioinformatics 14:819–820.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. 2000. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Molecular Phylogenetics and Evolution 14:89–106.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Algorithms in Bioinformatics, Second International Workshop, Wabi 2002, Rome, Italy, September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.

    Google Scholar 

  • Page, R. D. M. and Charleston, M. A. 1997a. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Molecular Phylogenetics and Evolution 7:231–240.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. and Charleston, M. A. 1997b. Reconciled trees and incongruent gene and species trees. In B. Mirkin, F. McMorris, F. Roberts, and A. Rzhetsky (eds), Mathematical Hierarchies in Biology, pp. 57–70. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Page, R. D. M. and Charleston, M. A. 1998. Trees within trees: phylogeny and historical associations. Trends in Ecology and Evolution 13:356–359.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. and Cotton, J. A. 2000. Gene Tree: a tool for exploring gene family evolution. In D. Sankoff and J. H. Nadeau (eds), Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 525–536. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Pisani, D., Yates, A. M., Langer, M. C., and Benton, M. J. 2002. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London B 269:915–921.

    Article  Google Scholar 

  • Purvis, A. 1995. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Ronquist, F. 1996. Matrix representation of trees, redundancy, and weighting. Systematic Biology 45:247–253.

    Article  Google Scholar 

  • Ronquist, F. 2003. Parsimony analysis of coevolving species associations. In R. D. M. Page (ed.), Tangled Trees: Phylogeny, Cospeciation and Coevolution, pp. 22–64. University of Chicago Press, Chicago.

    Google Scholar 

  • Ronquist, F., Huelsenbeck, J. P., and Britton, T. 2004. Bayesian supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 193–224. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Ronquist, F. and Nylin, S. 1990. Process and pattern in the evolution of species associations. Systematic Zoology 39:323–344.

    Article  Google Scholar 

  • Russo, C. A. M., Takezaki, N., and Nei, M. 1995. Molecular phylogeny and divergence times of drosophilid species. Molecular Biology and Evolution 12:391–404.

    PubMed  CAS  Google Scholar 

  • Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:136–150.

    Article  PubMed  Google Scholar 

  • Semple, C. 2003. Reconstructing minimal rooted trees. Discrete Applied Mathematics 127:489–503.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Slowinski, J. and Page, R. D. M. 1999. How should species phylogenies be inferred from sequence data? Systematic Biology 48:814–825.

    Article  PubMed  CAS  Google Scholar 

  • Slowinski, J. B., Knight, A., and Rooney, A. P. 1997. Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Molecular Phylogenetics and Evolution 8:349–362.

    Article  PubMed  CAS  Google Scholar 

  • Steel, M. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9:91–116.

    Article  Google Scholar 

  • Steel, M., Dress, A. W. M., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 2002. PAUP *. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Tatarenkov, A., Kwiatowski, J., Skarecky, D., Barrio, E., and Ayala, F. J. 1999. On the evolution of Dopa decarboxylase (Ddc) and Drosophila systematics. Journal of Molecular Evolution 48:445–462.

    Article  PubMed  CAS  Google Scholar 

  • Thorley, J. L. 2000. Cladistic Information, Leaf Stability and Supertree Construction. Ph.D. dissertation, University of Bristol.

    Google Scholar 

  • Thorley, J. L. and Wilkinson, M. 2003. A view of supertree methods. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 185–193. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Wareham, H. T. 1993. On the computational complexity of inferring evolutionary trees. Technical Report 9301, Department of Computer Science, Memorial University of Newfoundland.

    Google Scholar 

  • Waterman, M. S. and Smith, T. F. 1978. On the similarity of dendrograms. Journal of Theoretical Biology 73:789–800.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Pisani, D., Lapointe, F.J., and Mcinerney, J. O. 2004. Some desiderata for liberal supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 227–246. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Zhang, L. 1997. On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4:177–187.

    Article  PubMed  CAS  Google Scholar 

  • Zmasek, C. M. and Eddy, S. R. 2001. A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17:821–828.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cotton, J.A., Page, R.D.M. (2004). Tangled Tales from Multiple Markers. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics