Skip to main content

Supertrees, Components and Three-Item Data

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Supertree construction is explored from the perspective of binary and threeitem data. Binary data (components) code groups and subgroups, three-item data code relationships. Data are corroborative, consistent or conflicting. For either components or three-item statements, corroborative data support the same group; consistent data support different, non-conflicting groups; and conflicting data suggest alternative solutions. Binary data, when analyzed using parsimony, are unable to resolve simple cases of conflict. The lack of resolution is a result of the nature of the data and the peculiarities of “optimization”. Three-item data resolve most cases of conflict. Problems in systematic data analysis might be improved by investigations relating to the data, their meaning and their representation rather than exploring more methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E. N. 1972. Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 21:390–397.

    Article  Google Scholar 

  • Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology 40:486–493.

    Article  Google Scholar 

  • Barrett, M., Donoghue, M. J., and Sober, E. 1993. Crusade? A reply to Nelson. Systematic Biology 42:216–217.

    Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 1993. Reply to A. G. Rodrigo ’s “A comment on Baum ’s method for combining phylogenetic trees”. Taxon 42:637–640.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Chippindale, P. T. and Wiens, J. J. 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Systematic Biology 43:278–287.

    Google Scholar 

  • Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144–163.

    Article  Google Scholar 

  • Eernisse, D. J. and Kluge, A. G. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution 10:1170–1195.

    PubMed  CAS  Google Scholar 

  • Estabrook, G. F. 1972. Cladistic methodology: a discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology and Systematics 3:427–456.

    Article  Google Scholar 

  • Farris, J. S. 1973. On comparing the shapes of taxonomic trees. Systematic Zoology 22:50–54.

    Article  Google Scholar 

  • Farris, J. S. and Kluge, A. G. 1979. A botanical clique. Systematic Zoology 28:400–411.

    Article  Google Scholar 

  • Farris, J. S. and Kluge, A. G. 1997. Parsimony and history. Systematic Biology 46:215–218.

    Article  Google Scholar 

  • Farris, J. S., Kluge, A. G., and Eckhart, M. J. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19:172–189.

    Article  Google Scholar 

  • Felsenstein, J. 1982. Numerical methods for inferring evolutionary trees. Quarterly Review of Biology 57:379–404.

    Article  Google Scholar 

  • Felsenstein, J. 1984. The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In T. Duncan and T. F. Stuessy (eds), Cladistics: Perspectives on the Reconstruction of Evolutionary History, pp. 169–191. Columbia University Press, New York.

    Google Scholar 

  • Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:335–348.

    Article  Google Scholar 

  • Huelsenbeck, J. P., Swofford, D. L., Cunnington, C. W., Bull, J. J., and Waddell, P. W. 1994. Is character weighting a panacea for the problem of data heterogeneity in phylogenetic analysis? Systematic Biology 43:288–291.

    Google Scholar 

  • Kitching, I. J., Forey, P. L., Humphries, C. J., and Williams, D. M. 1998. Cladistics: the Theory and Practice ofParsimony Analysis. Oxford University Press, Oxford.

    Google Scholar 

  • Kluge, A. G. 1984. The relevance of parsimony to phylogenetic inference. In T. Duncan and T. F. Stussey (eds), Cladistics: Perspectives on the Reconstruction of Evolutionary History, pp. 24–38. Columbia University Press, New York.

    Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38:7–25.

    Article  Google Scholar 

  • Kluge, A. G. 1998. Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics 14:151–158.

    Article  Google Scholar 

  • Kluge, A. G. and Wolf, A. J. 1993. Cladistics: what ’s in a word? Cladistics 9:183–199.

    Article  Google Scholar 

  • Lorenzen, S. 1993. The role of parsimony, outgroup analysis, and theory of evolution in phylogenetic systematics. Zeitschrift für Zoologische Systematik und Evolutionsforschung 31:1–20.

    Article  Google Scholar 

  • Miyamoto, M. M. 1985. Consensus cladograms and general classifications. Cladistics 1:186–189.

    Article  Google Scholar 

  • Miyamoto, M. M. and Fitch, W. M. 1995. Testing species phylogenies and phylogenetic methods with congruence. Systematic Biology 44:64–76.

    Google Scholar 

  • Moore, J. M. 2001. [Review of “Disseminating Darwin”]. Books and Culture 7:36.

    Google Scholar 

  • Morse, J. C. and White, D. F., Jr. 1979. A technique for analysis of historical biogeography and other characters in comparative biology. Systematic Zoology 28:356–365.

    Article  Google Scholar 

  • Nelson, G. J. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson ’s Families des Plantes (1763–1764). Systematic Zoology 28:1–21.

    Article  Google Scholar 

  • Nelson, G. J. 1989. Cladistics and evolutionary models. Cladistics 5:275–289.

    Article  Google Scholar 

  • Nelson, G. J. 1993. Why crusade against consensus? A reply to Barrett, Donoghue, and Sober. Systematic Biology 42:215–216.

    Google Scholar 

  • Nelson, G. J. 1994. Homology and systematics. In B. K. Hall (ed.), Homology: the Hierarchical Basis of Comparative Biology, pp. 101–149. Academic Press, San Diego.

    Google Scholar 

  • Nelson, G. J. 1996. Nullius in Verba. Journal of Comparative Biology 1:141–152.

    Google Scholar 

  • Nelson, G. J. In press. Cladistics: its arrested development. In D. M. Williams and P. L. Forey (eds), Milestones in Systematics. Taylor & Francis, London.

    Google Scholar 

  • Nelson, G. J. and Ladiges, P. Y. 1991. Three-area statements: standard assumptions for biogeographic analysis. Systematic Zoology 40:470–485.

    Article  Google Scholar 

  • Nelson, G. J. and Ladiges, P. Y. 1994. Three-item consensus: empirical test of fractional weighting. In R. W. Scotland, D. J. Siebert, and D. M. Williams (eds), Models in Phylogeny Reconstruction, pp. 193–209. Clarendon Press, Oxford.

    Google Scholar 

  • Nelson, G. J. and Ladiges, P. Y. 1996. Paralogy in cladistic biogeography and analysis of paralogy-free subtrees. American Museum Novitates 3167:1–58.

    Google Scholar 

  • Nelson, G. J. and Ladiges, P. Y. 2001. Gondwana, vicariance biogeography and the New York School revisited. Australian Journal ofBotany 49:389–409.

    Article  Google Scholar 

  • Nelson, G. J. and Platnick, N. I. 1980. Multiple branching in cladograms: two interpretations. Systematic Zoology 29:86–91.

    Article  Google Scholar 

  • Nelson, G. J. and Platnick, N. I. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.

    Google Scholar 

  • Nelson, G. J. and Platnick, N. I. 1991. Three-taxon statements: a more precise use of parsimony? Cladistics 7:351–366.

    Article  Google Scholar 

  • Nelson, G. J., Williams, D. M., and Ebach, M. C. 2003. A question of conflict: three item and standard parsimony compared. Systematics and Biodiversity 2:145–149.

    Article  Google Scholar 

  • Nixon, K. C. and Carpenter, J. M. 1996. On consensus, collapsibility, and clade concordance. Cladistics 12:305–321.

    Article  Google Scholar 

  • Page, R. D. M. 1987. Graphs and generalized tracks: quantifying Croizat ’s panbiogeography. Systematic Zoology 36:1–12.

    Article  Google Scholar 

  • Page, R. D. M. 1989. Comments on component-compatibility in historical biogeography. Cladistics 5:167–182.

    Article  Google Scholar 

  • Page, R. D. M. 1990a. Component analysis: a valiant failure? Cladistics 6:119–136.

    Article  Google Scholar 

  • Page, R. D. M. 1990b. Tracks and trees in the Antipodes: a reply to Humphries and Seberg. Systematic Zoology 39:288–299.

    Article  Google Scholar 

  • Page, R. D. M. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43:58–77.

    Google Scholar 

  • Patterson, C. 1982. Morphological characters and homology. In K. A. Joysey and A. E. Friday (eds), Problems of Phylogenetic Reconstruction, pp. 21–74. Academic Press, London.

    Google Scholar 

  • Patterson, C. 1988. Homology in classical and molecular biology. Molecular Phylogenetics and Evolution 5:603–625.

    CAS  Google Scholar 

  • Pisani, D. and Wilkinson, M. 2002. Matrix representation with parsimony, taxonomic congruence, and total evidence. Systematic Biology 51:151–155.

    Article  PubMed  Google Scholar 

  • Platnick, N. I. 1993. Character optimization and weighting: differences between the standard and three-taxon approaches to phylogenetic inference. Cladistics 9:267–272.

    Article  Google Scholar 

  • Platnick N. I., Humphries, C. J., Nelson, G. J., and Williams, D. M. 1996. Is Farris optimization perfect? Cladistics 12:243–252.

    Article  Google Scholar 

  • Ragan, M. A. 1992a. Matrix representation in reconstructing phylogenetic relationships among the eukaryotes. Bio Systems 28:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Ragan, M. A. 1992b. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, A. G. 1993. A comment on Baum ’s method for combining phylogenetic trees. Taxon 42:631–636.

    Article  Google Scholar 

  • Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.

    Article  Google Scholar 

  • Ross, H. A. and Rodrigo, A. G. 2004. An assessment of matrix representation with compatibility in supertree construction. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 35–63. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Scotland, R. W. 1992. Cladistic theory. In P. L. Forey, C. J. Humphries, I. J. Kitching, R. W. Scotland, D. J. Siebert, and D. M. Williams. Cladistics: A Practical Course in Systematics, pp. 3–13. Oxford University Press. Oxford.

    Google Scholar 

  • Scotland, R. W. 1997. Parsimony neither maximizes congruence nor minimizes incongruence or homoplasy, Taxon 46:743–746.

    Article  Google Scholar 

  • Scotland, R. W. 2000. Homology, coding and three-taxon statement analysis. In R. W. Scotland and T. Pennington (eds), Homology and Systematics, pp. 145–182. Taylor and Francis, London.

    Google Scholar 

  • Sneath, P. H. A. 1988. The phenetic and cladistic approaches. In D. L. Hawksworth (ed.), Prospects in systematics, pp. 252–273. Clarendon Press, Oxford.

    Google Scholar 

  • Sneath, P. H. A. 1995. Thirty years of numerical taxonomy. Systematic Biology 44:281–298.

    Google Scholar 

  • Sokal, R. R. and Sneath, P. H. A. 1963. Principles of Numerical Taxonomy. W. H. Freeman, San Francisco.

    Google Scholar 

  • WÄgele, J. W. 1994. Review of methodological problems of “computer cladistics” exemplified with a case study on isopod phylogeny (Crustacea: Isopoda). Zeitschrift für zoologische Systematik und Evolutionsforschung 32:81–107.

    Article  Google Scholar 

  • Wilkinson, M. 1994a. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology 43:343–368.

    Google Scholar 

  • Wilkinson, M. 1994b. Three-taxon statements: when is a parsimony analysis also a clique analysis? Cladistics 10:221–223.

    Article  Google Scholar 

  • Wilkinson, M. 1994c. The permutation method and character compatibility. Systematic Biology 43:274–277.

    Google Scholar 

  • Wilkinson, M., and Thorley, J. L. 1998. Reduced supertrees. Trends in Ecology and Evolution 13:283.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree of Platyhelminthes? In D. T. J. Littlewood and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Taylor and Francis, London.

    Google Scholar 

  • Williams, D. M. 1994. Combining trees and combining data. Taxon 43:449–453.

    Article  Google Scholar 

  • Williams, D. M. 1996a. Characters and cladograms. Taxon 45:275–283.

    Article  Google Scholar 

  • Williams, D. M. 1996b. Fossil species of the diatom genus Tetracyclus (Bacillariophyta, ‘ellipticus ’ group): morphology, interrelationships and the relevance of morphogenesis to phylogeny. Philosophical Transactions of the Royal society of London Series B 351:1759–1782.

    Article  Google Scholar 

  • Williams, D. M. 2002. Parsimony and precision. Taxon 51:143–149.

    Article  Google Scholar 

  • Williams, D. M. In press. Homology and homologues, cladistics and phenetics: 150 years of progress. In D. M. Williams and P. L. Forey (eds), Milestones in Systematics. Taylor & Francis, London.

    Google Scholar 

  • Williams, D. M. and Humphries, C. J. 2003a. Component coding, three-item coding and consensus methods. Systematic Biology 52:255–259.

    Article  PubMed  Google Scholar 

  • Williams, D. M. and Humphries, C. J. 2003b. Homology and the evolution of characters. In T. Stuessy, E. Hörandl, and V. Mayer (eds), Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, pp. 119–130. Königstein, Koeltz.

    Google Scholar 

  • Williams, D. M. and Siebert, D. J. 2000. Characters, homology and three-item analysis. In R. W. Scotland and T. Pennington (ed.), Homology and Systematics, pp. 183–208. Taylor and Francis, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Williams, D.M. (2004). Supertrees, Components and Three-Item Data. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics