Skip to main content
Log in

Rapid Divergent Evolution of Male Genitalia Among Populations of Drosophila buzzatii

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Increasing evidence from multiple animal systems suggests that genital evolution and diversification are driven by rapid and strong evolutionary forces. Particularly, the morphology of male genital structures is considered to be among the fastest evolving traits in animal groups with internal fertilization. In this study, we investigated patterns of male genital variation within and between natural populations of the cactophilic fly Drosophila buzzatii in its original geographic distribution range in the Neotropics. We detected significant morphological differences among populations and distinguished five differentiated groups. Moreover, among population differentiation in genital morphology was associated with the degree of geographic isolation among populations and clearly contrasted with the general homogeneity detected for the putatively neutral mitochondrial gene COI. Integrating our present data with previous molecular population genetic surveys, our results suggest that male genital morphology has rapidly diverged after the recent demographic expansion that D. buzzatii has undergone in the arid zones of South America. Because the “lock and key” hypothesis failed to explain the present pattern, we explored alternative explanations for the observed pattern of genital diversification including drift-facilitated sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade, C. A. C., Hatadani, L. M., & Klaczko, L. B. (2005). Phenotypic plasticity of the aedeagus of Drosophila mediopunctata. Journal of Thermal Biology, 30, 518–523.

    Article  Google Scholar 

  • Andrade, C. A. C., Vieira, R. D., Ananina, G., & Klaczko, L. B. (2009). Evolution of the male genitalia: Morphological variation of the aedeagi in a natural population of Drosophila mediopunctata. Genetica, 135(1), 13–23.

    Article  PubMed  Google Scholar 

  • Arnqvist, G. (1997). The evolution of animal genitalia: Distinguishing between hypotheses by single species studies. Biological Journal of the Linnean Society of London, 60, 365–379.

    Article  Google Scholar 

  • Brommer, J. E. (2011). Wither P ST? The approximation of Q ST by P ST in evolutionary and conservation biology. Journal of Evolutionary Biology, 24, 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  • Cabrera, A. L. (1976). Regiones Fitogeográficas Argentinas. In W. F. Kugler (Ed.), Enciclopedia Argentina de Agricultura y Jardinería (pp. 2–85). Buenos Aires: Acme.

    Google Scholar 

  • Cavalcanti, M. J. (2008). Mantel for Windows. Test for association between two symmetric distance matrices with permutations iterations. Version 1.19 http://maurobio.infobio.net.

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer.

    Google Scholar 

  • Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., & Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15, 290–295.

    Article  PubMed  Google Scholar 

  • Crespi, B. J. (2000). The evolution of maladaptation. Heredity, 84, 623–629.

    Article  PubMed  Google Scholar 

  • De Brito, R. A., Manfrin, M. H., & Sene, F. M. (2002). Mitochondrial DNA phylogeography of Brazilian populations of Drosophila buzzatii. Genetics and Molecular Biology, 25(2), 161–171.

    Article  Google Scholar 

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. & Robledo C. W. (2009). InfoStat ver. 2009. InfoStat Group, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar/.

  • Dufour, L. (1844). Anatomie générale des Diptères. Annuaire de Science Naturelle, 1, 244–264.

    Google Scholar 

  • Endler, J. A. (1977). Geographic variation, speciation, and clines. Princeton: Princeton University Press.

    Google Scholar 

  • Fanara, J. J., Folguera, G., Iriarte, P. F., Mensch, J., & Hasson, E. (2006). Genotype by environment interactions and development time in populations of cactophilic Drosophila. Journal of Evolutionary Biology, 19, 900–908.

    Article  PubMed  CAS  Google Scholar 

  • Fernández Iriarte, P., & Hasson, E. (2000). The role of the use of different host plants in the maintenance of the inversion polymorphism in the cactophilic Drosophila buzzatii. Evolution, 54, 1295–1302.

    Article  PubMed  Google Scholar 

  • Fernández Iriarte, P., Rodríguez, C., & Hasson, E. (2002). Inversion and allozyme polymorphism show contrasting patterns of microgeographic population structure in a natural population of Drosophila buzzatii. Journal of Evolutionary Biology, 15, 226–234.

    Article  Google Scholar 

  • Fontdevila, A., Ruiz, A., Ocaña, J., & Alonso, G. (1982). The evolutionary history of Drosophila buzzatii. II. How much has chromosomal polymorphism changed in colonization? Evolution, 36, 843–851.

    Article  Google Scholar 

  • Garnier, S., Magniez-Jannin, F., Rasplus, J. Y., & Alibert, P. (2005). When morphometry meets genetics: Inferring the phylogeography of Carabus solieri using Fourier analyses of pronotum and male genitalia. Journal of Evolutionary Biology, 18, 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Gómez, G. A., & Hasson, E. (2003). Transpecific polymorphisms in an inversion linked esterase locus in Drosophila buzzatii. Molecular Biology and Evolution, 20, 410–423.

    Article  PubMed  Google Scholar 

  • Hasson, E., Fanara, J. J., Rodríguez, C., Vilardi, J. C., Reig, O. A., & Fontdevila, A. (1992). The evolutionary history of Drosophila buzzatii. XXIV: Second chromosome inversions have different average effect on thorax length. Heredity, 68, 557–563.

    Article  PubMed  Google Scholar 

  • Hasson, E., Rodríguez, C., Fanara, J. J., Naveira, H., Reig, A. O., & Fontdevila, A. (1995). Macrogeographic patterns in the inversion polymorphisms of Drosophila buzzatii in New World populations. Journal of Evolutionary Biology, 8, 369–384.

    Article  Google Scholar 

  • Hasson, E., Soto, I. M., Carreira, V. P., Corio, C., Soto, E. M., & Betti, M. (2009). Host plants, fitness and developmental instability in a guild of cactophilic species of the genus Drosophila. In E. B. Santos (Ed.), Ecotoxicology research developments (pp. 89–109). Nueva York: Nova Science Publishers.

    Google Scholar 

  • Hasson, E., Vilardi, J. C., Naveira, H., Fanara, J. J., Rodriguez, C., Reig, O. A., et al. (1991). The evolutionary history of Drosophila buzzatii. XVI. Fitness components analysis in a natural original population from Argentina. Journal of Evolutionary Biology, 4, 209–225.

    Article  Google Scholar 

  • Hedrick, P. W. (2005). Genetics of populations. Boston: Jones and Bartlett.

    Google Scholar 

  • Hendry, A. P., Taylor, E. B., & McPhail, J. D. (2002). Adaptive divergence and the balance between selection and gene flow: Lake and stream stickleback in the Misty system. Evolution, 56, 1199–1216.

    PubMed  Google Scholar 

  • Hood, G. M. (2008). PopTools version 3.0.6. Available on the internet. URL http://www.cse.csiro.au/poptools.

  • Hosken, D. J., & Stockley, P. (2004). Sexual selection and genital evolution. Trends in Ecology and Evolution, 19, 8793.

    Article  Google Scholar 

  • House, C. M., & Simmons, L. W. (2003). Genital morphology and fertilization success in the dung beetle Onthophagus taurus: An example of sexually selected male genitalia. Proceedings of the Royal Society B, 270, 447–455.

    Article  PubMed  Google Scholar 

  • Iwata, H., & Ukai, Y. (2002). SHAPE: A computer program package for quantitative evaluation of biological shapes based on Elliptic Fourier Descriptors. Journal of Heredity, 93, 384–385.

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeshan, S., & Singh, R. S. (2006). A time-sequence functional analysis of mating behaviour and genital coupling in Drosophila: Role of cryptic female choice and male sex-drive in the evolution of male genitalia. Journal of Evolutionary Biology, 19, 1058–1070.

    Article  PubMed  CAS  Google Scholar 

  • King, R. B., & Lawson, R. (1995). Color-pattern variation in Lake Erie water snakes: The role of gene flow. Evolution, 49, 885–896.

    Article  Google Scholar 

  • Kopp, A., & True, J. R. (2002). Evolution of male sexual characters in the Oriental Drosophila melanogaster species group. Evolution and Development, 4, 278–291.

    Article  PubMed  Google Scholar 

  • Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 236–258.

    Article  Google Scholar 

  • Laayouni, H., Hasson, E., Santos, M., & Fontdevila, A. (2003). The evolutionary history of Drosophila buzzatii. XXXV. Inversion polymorphism and nucleotide variability in different regions of the second chromosome. Molecular Biology and Evolution, 20, 931–944.

    Article  PubMed  CAS  Google Scholar 

  • Leinonen, T., O’Hara, R., Cano, J. M., & Merilä, J. (2008). Comparative studies of quantitative trait and neutral marker divergence: A meta-analysis. Journal of Evolutionary Biology, 21, 1–17.

    PubMed  CAS  Google Scholar 

  • Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology and Evolution, 17, 183–189.

    Article  Google Scholar 

  • Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): Support for the ecological speciation hypothesis. Evolution, 53, 1491–1505.

    Article  Google Scholar 

  • Manfrin, M. H., & Sene, F. M. (2006). Cactophilic Drosophila in South America: A model for evolutionary studies. Genetica, 126, 57–75.

    Article  PubMed  Google Scholar 

  • Markow, T. A., & O’ Grady, P. M. (2006). Drosophila: A guide for species identification and use. London: Academic Press.

    Google Scholar 

  • Masly, J. P. (2012). 170 years of “lock-and-key”: Genital morphology and reproductive isolation. International Journal of Evolutionary Biology,. doi:10.1155/2012/247352.

    PubMed  Google Scholar 

  • McPeek, M. A., Shen, L., Torrey, J. Z., & Farid, H. (2008). The tempo and mode of three-dimensional morphological evolution in male reproductive structures. American Naturalist, 171, 158–178.

    Article  Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.

    Article  Google Scholar 

  • Piccinali, R., Aguadé, M., & Hasson, E. (2004). Comparative molecular population genetics of the Xdh locus in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Molecular Biology and Evolution, 21, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Piccinali, R. V., Mascord, L. J., Barker, J. S., Oakeshott, J. G., & Hasson, E. (2007). Molecular population genetics of the alpha-esterase5 gene locus in original and colonized populations of Drosophila buzzatii and its sibling Drosophila koepferae. Journal of Molecular Evolution, 64, 158–170.

    Article  PubMed  CAS  Google Scholar 

  • Polihronakis Richmond, M., Johnson, S., & Markow, T. A. (2012). Evolution of reproductive morphology among recently diverged taxa in the Drosophila mojavensis species cluster. Ecology and Evolution, 2(2), 397–408.

    Article  Google Scholar 

  • Pomiankowski, A., & Möller, A. P. (1995). A resolution of the lek paradox. Proceedings of the Royal Society B, 260, 21–29.

    Article  Google Scholar 

  • Pujol, B., Wilson, A. J., Ross, R. I. C., & Pannell, J. R. (2008). Are Q(ST)-F-ST comparisons for natural populations meaningful? Molecular Ecology, 17, 4782–4785.

    Article  PubMed  CAS  Google Scholar 

  • Raeymaekers, J. A. M., Van Houdt, J. K. J., Larmuseau, M. H. D., Geldof, S., & Volckaert, F. A. M. (2007). Divergent selection as revealed by PST and QTL-based FST in three-spined stickle- back (Gasterosteus aculeatus) populations along a coastal-inland gradient. Molecular Ecology, 16, 891–905.

    Article  PubMed  Google Scholar 

  • Riechert, S. E., Singer, F. D., & Jones, T. C. (2001). High gene flow levels lead to gamete wastage in a desert spider system. Genetica, 112, 297–319.

    Article  PubMed  Google Scholar 

  • Rodríguez, C., Piccinali, R., Levy, E., & Hasson, E. (2000). Contrasting population genetic structures using allozymes and the inversion polymorphism in Drosophila buzzatii. Journal of Evolutionary Biology, 13, 976–984.

    Article  Google Scholar 

  • Rohlf, F. J., & Archie, J. W. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Biology, 33, 302–317.

    Google Scholar 

  • Ross, K. G., & Keller, L. (1995). Joint influence of gene flow and selection on a reproductively important genetic polymorphism in the fire ant Solenopsis invicta. American Naturalist, 146, 325–348.

    Article  Google Scholar 

  • Rossi, M. S., Barrio, E., Latorre, A., Quezada-Díaz, J. E., Hasson, E., Moya, A., et al. (1996). The evolutionary history of Drosophila buzzatii. XXX. Mitochondrial DNA polymorphism in original and colonizing populations. Molecular Biology and Evolution, 13, 314–323.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Laurent, R., Legault, M., & Bernatchez, L. (2003). Divergent selection maintains adaptive differentiation despite high gene flow between sympatric rainbow smelt ecotypes. Molecular Ecology, 12, 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval, C. P. (1994). The effects of relative geographic scales of gene flow and selection on morph frequencies in the walking stick Timema cristinae. Evolution, 48, 1866–1879.

    Article  Google Scholar 

  • Schluter, D. (1998). Ecological causes of speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 114–129). Oxford: Oxford University Press.

    Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236, 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. B., Wayne, R. K., Girman, D. J., & Bruford, M. W. (1997). A role for ecotones in generating rainforest biodiversity. Science, 276, 1855–1857.

    Article  CAS  Google Scholar 

  • Soto, I. M. (2012). Aedeagal divergence in sympatric populations of two sibling species of cactophilic Drosophila (Diptera, Drosophilidae): Evidence of character displacement? Neotropical Entomology, 41(3), 207–213.

    Article  Google Scholar 

  • Soto, I. M., Carreira, V. P., Fanara, J. J., & Hasson, E. (2007). Evolution of male genitalia: Environmental and genetic factors affecting genital morphology in sibling Drosophila species and their hybrids. BMC Evolutionary Biology, 7, 77.

    Article  PubMed  Google Scholar 

  • Soto, I. M., Manfrin, M. H., & Hasson, E. (2008). Host-dependent phenotypic plasticity of male genital morphology in cactophilic Drosophila. Journal of Zoological Systematics and Evolutionary Research, 46, 368–373.

    Article  Google Scholar 

  • Soto, I. M., Soto, E. M., Carreira, V. P., Hurtado, J., Fanara, J. J., & Hasson, E. (2010). Geographic patterns of inversion polymorphism in the second chromosome of the cactophilic Drosophila buzzatii from northeastern Argentina. Journal of Insect Science, 10, 181.

    Article  PubMed  Google Scholar 

  • Spitze, K. (1993). Population structure in Daphnia obtusa: Quantitative genetic and allozyme variation. Genetics, 135, 367–374.

    PubMed  CAS  Google Scholar 

  • StatSoft Inc. (2001). STATISTICA (data analysis software system), version 6.0. www.statsoft.com.

  • Storfer, A., Cross, J., Rush, R., & Caruso, J. (1999). Adaptive coloration and gene flow as a constraint to local adaptation in the streamside salamander, Ambystoma barbouri. Evolution, 53, 889–898.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Tazzyman, S. J., & Iwasa, Y. (2010). Sexual selection can increase the effect of random genetic drift—Quantitative genetic model of polymorphism in Oophaga pumilio, the strawberry poison-dart frog. Evolution, 64, 1558–5646.

    Article  Google Scholar 

  • Uyeda, J. C., Arnold, S. J., Hohenlohe, P. A., & Mead, L. S. (2009). Drift promotes speciation by sexual selection. Evolution, 63, 583–594.

    Article  PubMed  Google Scholar 

  • Valdano, S. G. & Di Rienzo, J. (2007). Discovering meaningful groups in hierarchical cluster analysis. An extension to the multivariate case of a multiple comparison method based on cluster analysis. InterStat. http://interstat.statjournals.net/YEAR/2007/abstracts/0704002.php.

  • Vilela, C. R. (1983). A revision of the Drosophila repleta species group (Diptera, Drosophilidae). Revista Brasilera de Entomología, 27, 1–114.

    Google Scholar 

  • Vilela, C. R., & Brito da Cunha, A. (2006). On marta breuer and some of her unpublished drawings of Drosophila spp. male terminalia (Diptera, Drosophilidae). Genetics and Molecular Biology, 587, 580–587.

    Article  Google Scholar 

  • Whitlock, M. C. (2008). Evolutionary inference from Qst. Molecular Ecology, 17, 1885–1896.

    Article  PubMed  Google Scholar 

  • Wojcieszek, J. M., & Simmons, L. W. (2012). Evidence for stabilizing selection and slow divergent evolution of males genitalia in a millipede (Antichiropus variabilis). Evolution, 66(4), 1138–1153.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank F. F. Franco and M. Polihronakis Richmond for helpful discussions in early stages of this investigation and in the drafting of the manuscript respectively. We are also grateful to two anonymous reviewers whose insightful advice and corrections helped to greatly improve the original manuscript. This work was supported by grants of Universidad de Buenos Aires, ANPCyT and CONICET. P. L., F. M. and E. M. S. are recipients of postgraduate and postdoctoral scholarships of CONICET respectively. I. M. S., V. P. C. and E. H. are members of Carrera del Investigador Científico (CONICET).

Conflict of interest

The authors also have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio M. Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, I.M., Carreira, V.P., Soto, E.M. et al. Rapid Divergent Evolution of Male Genitalia Among Populations of Drosophila buzzatii . Evol Biol 40, 395–407 (2013). https://doi.org/10.1007/s11692-013-9223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9223-x

Keywords

Navigation