Skip to main content
Log in

Unresolved questions in genitalia coevolution: bridging taxonomy, speciation, and developmental genetics

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Systematists and geneticists study biological diversity, but they use different approaches that rarely intersect. A very common pattern that is of interest for both researchers is the rapid evolution of genitalia, a trait of significant taxonomic utility in several sexually reproducing animal clades. The idea that both male and female genitalia are species-specific and play a role in reproductive isolation has long been controversial but has recently gained a renewed interest by speciation and developmental geneticists. Here, I highlight six unresolved questions in genitalia coevolution and I argue that systematists, with their well training in comparative morphology, usage of large and geographically diverse collections, and ability to apply molecular genetics techniques, can make important contributions. Such an extension of systematics into the speciation and developmental genetics realms is a promising opportunity to expand “integrative taxonomy” comparisons between DNA and morphology into more explanatory relationships between the two sources of taxonomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnqvist, G., & Rowe, L. (2002). Correlated evolution of male and female morphologies in water striders. Evolution, 56(5), 936–947.

    Article  PubMed  Google Scholar 

  • Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton University Press.

  • Aspiras, A. C., Smith, F. W., & Angelini, D. R. (2011). Sex-specific gene interactions in the patterning of insect genitalia. Developmental Biology, 360(2), 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Baer, B., & Boomsma, J. J. (2006). Mating biology of the leaf-cutting ants Atta colombica and A. cephalotes. Journal of Morphology, 267(10), 1165–1171.

    Article  PubMed  Google Scholar 

  • Bargielowski, I. E., Lounibos, L. P., & Carrasquilla, M. C. (2013). Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 2888–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan, P. L. R., Prum, R. O., McCracken, K. G., Sorenson, M. D., Wilson, R. E., & Birkhead, T. R. (2007). Coevolution of male and female genital morphology in waterfowl. PLoS ONE, 2(5), e418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burla, H. (1954). Zur Kenntnis der Drosophiliden der Elfenbeinküste Französisch West-Afrika. Revue Suisse de Zoologie, 61(suppl), 1–218.

    Article  Google Scholar 

  • Cayetano, L., Maklakov, A. A., Brooks, R. C., & Bonduriansky, R. (2011). Evolution of male and female genitalia following release from sexual selection. Evolution, 65(8), 2171–2183.

    Article  PubMed  Google Scholar 

  • Chatterjee, S. S., Uppendahl, L. D., Chowdhury, M. A., Ip, P.-L., & Siegal, M. L. (2011). The female-specific doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila. Development, 138(6), 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  • Cohn, M. J. (2011). Development of the external genitalia: conserved and divergent mechanisms of appendage patterning. Developmental Dynamics, 240(5), 1108–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer Associates, Incorporated Publishers.

  • Damen, W. G., & Tautz, D. (1999). Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. The Journal of Experimental Zoology, 285(1), 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Damen, W. G. M., Hausdorf, M., Seyfarth, E.-A., & Tautz, D. (1998). A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10665–10670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3), 407–415.

    Article  Google Scholar 

  • Drea, C. M., Place, N. J., Weldele, M. L., Coscia, E. M., Licht, P., & Glickman, S. E. (2002). Exposure to naturally circulating androgens during foetal life incurs direct reproductive costs in female spotted hyenas, but is prerequisite for male mating. Proceedings of the Royal Society B: Biological Sciences, 269(1504), 1981–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour, L. (1844). Anatomie générale des Diptères. Annales des Sciences Naturelles, 1, 224–264.

    Google Scholar 

  • Dunkle, S. W. (1991). Head damage from mating attempts in dragonflies (Odonata: Anisoptera). Entomological News, 102(1), 37–41.

    Google Scholar 

  • Duveau, F., & Félix, M.-A. (2012). Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biology, 10(1), e1001230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard, W. G. (1985). Sexual selection and Animal Genitalia. Harvard University Press.

  • Eberhard, W. G. (2004). Rapid divergent evolution of sexual morphology: comparative tests of antagonistic coevolution and traditional female choice. Evolution, 58(9), 1947–1970.

    Article  PubMed  Google Scholar 

  • Eberhard, W. G. (2010a). Evolution of genitalia: theories, evidence, and new directions. Genetica, 138(1), 5–18.

    Article  PubMed  Google Scholar 

  • Eberhard, W. G. (2010b). Rapid divergent evolution of genitalia: theory and data updated. In J. Leonard & A. Cordoba-Aguilar (Eds.), The evolution of primary sexual characters in animals (pp. 40–78). Oxford: Oxford University Press.

    Google Scholar 

  • Eberhard, W. G., & Huber, B. A. (2010). Spider genitalia: precise maneuvers with a numb structure in a complex lock. In J. Leonard & A. Cordoba-Aguilar (Eds.), The evolution of primary sexual characters in animals (pp. 249–284). Oxford: Oxford University Press.

    Google Scholar 

  • Eberhard, W., & Ramirez, N. (2004). Functional morphology of the male genitalia of four species of Drosophila: failure to confirm both lock and key and male–female conflict. Annals of the Entomological Society of America, 97(5), 1007–1017.

    Article  Google Scholar 

  • Evans, J. P., Gasparini, C., Holwell, G. I., Ramnarine, I. W., Pitcher, T. E., & Pilastro, A. (2011). Intraspecific evidence from guppies for correlated patterns of male and female genital trait diversification. Proceedings of the Royal Society B: Biological Sciences, 278(1718), 2611–2620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foronda, D., Estrada, B., de Navas, L., & Sánchez-Herrero, E. (2006). Requirement of Abdominal-A and Abdominal-B in the developing genitalia of Drosophila breaks the posterior downregulation rule. Development, 133(1), 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, L. R., LeBoeuf, B., & Koo, P. (2007). Diversity in mating behavior of hermaphroditic and male–female Caenorhabditis nematodes. Genetics, 175(4), 1761–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilets, S. (2004). Fitness landscapes and the origin of species. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Gompert, Z., Nice, C. C., Fordyce, J. A., Forister, M. L., & Shapiro, A. M. (2006). Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Molecular Ecology, 15(7), 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  • Good, J. M., Demboski, J. R., Nagorsen, D. W., & Sullivan, J. (2003). Phylogeography and introgressive hybridization: chipmunks (genus Tamias) in the northern Rocky Mountains. Evolution, 57(8), 1900–1916.

    Article  PubMed  Google Scholar 

  • Gorfinkiel, N., Sánchez, L., & Guerrero, I. (1999). Drosophila terminalia as an appendage-like structure. Mechanisms of Development, 86(1–2), 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Hasselquist, F. (1762). Reise nach Palästina in den Jahren 1749 bis 1752: Rostock.

  • Helsdingen, P. J. V. (1969). A reclassification of the species of Linyphia Latreille based on the functioning of the genitalia (Araneida, Linyphiidae). Brill Archive.

  • Hill, W. C. O. (1951). The external genitalia of the female chimpanzec; with observations on the mammary apparatus. Proceedings of the Zoological Society of London, 121(1), 133–145.

    Article  Google Scholar 

  • Hodgkin, J. (1983). Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics, 103(1), 43–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander, J., Smadja, C. M., Butlin, R. K., & Reid, D. G. (2013). Genital divergence in sympatric sister snails. Journal of Evolutionary Biology, 26(1), 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Horton, D. R., & Lewis, T. M. (2011). Variation in male and female genitalia among ten species of North American Anthocoris (Hemiptera: Heteroptera: Anthocoridae). Annals of the Entomological Society of America, 104(6), 1260.

    Article  Google Scholar 

  • Israelson, G. (1972). Male copulatory organs of Macaronesian species of Aphanarthrum Wollaston. With designations of lectotypes and descriptions of new taxa (Col. Scolytidae). Insect Systematics and Evolution, 3(4), 17–257.

    Article  Google Scholar 

  • Jagadeeshan, S., & Singh, R. S. (2006). A time-sequence functional analysis of mating behaviour and genital coupling in Drosophila: role of cryptic female choice and male sex-drive in the evolution of male genitalia. Journal of Evolutionary Biology, 19(4), 1058–1070.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C. (1972). Tandem linkage, sperm translocation, and copulation in the dragonfly, Hagenius brevistylus (Odonata: Gomphidae). American Midland Naturalist, 88(1), 131–149.

    Article  Google Scholar 

  • Jordal, B. H., Emerson, B. C., & Hewitt, G. M. (2006). Apparent “sympatric” speciation in ecologically similar herbivorous beetles facilitated by multiple colonizations of an island. Molecular Ecology, 15(10), 2935–2947.

    Article  CAS  PubMed  Google Scholar 

  • Kameda, Y., Kawakita, A., & Kato, M. (2009). Reproductive character displacement in genital morphology in Satsuma land snails. The American Naturalist, 173(5), 689–697.

    Article  PubMed  Google Scholar 

  • Kamimura, Y. (2007). Twin intromittent organs of Drosophila for traumatic insemination. Biology Letters, 3(4), 401–404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamimura, Y., & Mitsumoto, H. (2011). Comparative copulation anatomy of the Drosophila melanogaster species complex (Diptera: Drosophilidae). Entomological Science, 14(4), 399–410.

    Article  Google Scholar 

  • Kamimura, Y., & Mitsumoto, H. (2012). Lock-and-key structural isolation between sibling Drosophila species. Entomological Science, 15(2), 197–201.

    Article  Google Scholar 

  • Kawakami, Y., & Tatsuta, H. (2010). Variation in the shape of genital appendages along a transect through sympatric and allopatric areas of two brachypterous grasshoppers, Parapodisma setouchiensis and Parapodisma subastris (Orthoptera: Podisminae). Annals of the Entomological Society of America, 103(3), 327–331.

    Article  Google Scholar 

  • Kawano, K. (2002). Character displacement in giant rhinoceros beetles. The American Naturalist, 159(3), 255–271.

    Article  PubMed  Google Scholar 

  • Kawano, K. (2003). Character displacement in stag beetles (Coleoptera: Lucanidae). Annals of the Entomological Society of America, 96(4), 503–511.

    Article  Google Scholar 

  • Keisman, E. L., & Baker, B. S. (2001). The Drosophila sex determination hierarchy modulates wingless and decapentaplegic signaling to deploy dachshund sex-specifically in the genital imaginal disc. Development, 128(9), 1643–1656.

    CAS  PubMed  Google Scholar 

  • Khila, A., Abouheif, E., & Rowe, L. (2012). Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science, 336(6081), 585–589.

    Article  CAS  PubMed  Google Scholar 

  • Koene, J. M., & Schulenburg, H. (2005). Shooting darts: co-evolution and counter-adaptation in hermaphroditic snails. BMC Evolutionary Biology, 5(1), 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Mercer, J. M., Stam, L. F., Gibson, G. C., Zeng, Z. B., & Laurie, C. C. (1996). Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics, 142(4), 1129–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas, L. K., Fordyce, J. A., & Nice, C. C. (2008). Patterns of genitalic morphology around suture zones in North American Lycaeides (Lepidoptera: Lycaenidae): implications for taxonomy and historical biogeography. Annals of the Entomological Society of America, 101(1), 172–180.

    Article  Google Scholar 

  • Macagno, A. L. M., & Moczek, A. P. (2015). Appendage-patterning genes regulate male and female copulatory structures in horned beetles. Evolution & Development, 17(4), 248–253.

    Article  CAS  Google Scholar 

  • Macdonald, S. J., & Goldstein, D. B. (1999). A quantitative genetic analysis of male sexual traits distinguishing the sibling species Drosophila simulans and D. sechellia. Genetics, 153(4), 1683–1699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masly, J. P. (2012). 170 years of “lock-and-key”: genital morphology and reproductive isolation. International Journal of Evolutionary Biology, 2012, 1–10.

    Article  Google Scholar 

  • Matute, D. R., & Coyne, J. A. (2010). Intrinsic reproductive isolation between two sister species of Drosophila. Evolution, 64(4), 903–920.

    Article  PubMed  Google Scholar 

  • Maupas, E. (1900). Modes et formes de reproduction des nématodes. Archives de Zoologie Expérimentale et Générale, 8, 463–624.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • McLean, C. Y., Reno, P. L., Pollen, A. A., Bassan, A. I., Capellini, T. D., Guenther, C., et al. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 471(7337), 216–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil, C. L., Bain, C. L., & Macdonald, S. J. (2011). Multiple quantitative trait loci influence the shape of a male-specific genital structure in Drosophila melanogaster. G3: Genes, Genomes. Genetics, 1(5), 343–351.

    Google Scholar 

  • McPeek, M. A., Shen, L., & Farid, H. (2009). The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution, 63(1), 73–83.

    Article  PubMed  Google Scholar 

  • Meigen, J. W. (1830). Systematische Beschreibung der bekannten Europaischen zweiflugeligen insekten. Schulze.

  • Minelli, A. (2015). Biological systematics in the Evo-Devo era. European Journal of Taxonomy, 125, 1–23.

    Google Scholar 

  • Nagata, N., Kubota, K., Yahiro, K., & Sota, T. (2007). Mechanical barriers to introgressive hybridization revealed by mitochondrial introgression patterns in Ohomopterus ground beetle assemblages. Molecular Ecology, 16(22), 4822–4836.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, M. D. S., Orozco-Ter Wengel, P., Kreissl, M., & Schlotterer, C. (2010). Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression. Molecular Ecology, 19(21), 4695–4707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paaby, A. B., & Rockman, M. V. (2013). The many faces of pleiotropy. Trends in Genetics, 29(2), 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Parsch, J., & Ellegren, H. (2013). The evolutionary causes and consequences of sex-biased gene expression. Nature Reviews Genetics, 14(2), 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, B. D., & Thaeler, C. S. (1982). The mammalian baculum: hypotheses on the nature of bacular variability. Journal of Mammalogy, 63(1), 1–15.

    Article  Google Scholar 

  • Peluffo, A. E., Nuez, I., Debat, V., Savisaar, R., Stern, D. L., & Orgogozo, V. (2015). A major locus controls a genital shape difference involved in reproductive isolation between Drosophila yakuba and Drosophila santomea. G3: Genes|Genomes|Genetics, g3.115.023481.

  • Peretti, A. V. (2003). Functional morphology of spermatophores and female genitalia in bothriurid scorpions: genital courtship, coercion and other possible mechanisms. Journal of Zoology, 261, 135–153.

    Article  Google Scholar 

  • Pitnick, S., Markow, T., & Spicer, G. S. (1999). Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution, 53(6), 1804–1822.

    Article  Google Scholar 

  • Pratt, H. L. (1979). Reproduction in the blue shark Prionace glauca. Fishery Bulletin, 77, 445–470.

    Google Scholar 

  • Robertson, H. M., & Paterson, H. E. H. (1982). Mate recognition and mechanical isolation in Enallagma damselflies (Odonata: Coenagrionidae). Evolution, 36(2), 243–250.

    Article  Google Scholar 

  • Robson, G. C., & Richards, O. W. (1936). The Variation of Animals in Nature. London, New York [etc.] Longmans, Green and Co.

  • Rönn, J., Katvala, M., & Arnqvist, G. (2007). Coevolution between harmful male genitalia and female resistance in seed beetles. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10921–10925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryckman, R. E., & Ueshima, N. (1964). Biosystematics of the Hesperocimex complex (Hemiptera: Cimicidae) and avian hosts (Piciformes: Picidae; Passeriformes: Hirundinidae). Annals of the Entomological Society of America, 57, 624–638.

    Article  Google Scholar 

  • Sánchez, L., & Guerrero, I. (2001). The development of the Drosophila genital disc. BioEssays, 23(8), 698–707.

    Article  PubMed  Google Scholar 

  • Sánchez, V., Hernández-Baños, B. E., & Cordero, C. (2011). The evolution of a female genital trait widely distributed in the Lepidoptera: comparative evidence for an effect of sexual coevolution. PLoS ONE, 6(8), e22642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasabe, M., Takami, Y., & Sota, T. (2010). QTL for the species-specific male and female genital morphologies in Ohomopterus ground beetles. Molecular Ecology, 19(23), 5231–5239.

    Article  PubMed  Google Scholar 

  • Sauer, J., & Hausdorf, B. (2009). Sexual selection is involved in speciation in a land snail radiation on crete. Evolution, 63(10), 2535–2546.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, M. A., Routtu, J., Vieira, J., Hoikkala, A., Ritchie, M. G., & Schlötterer, C. (2011). Multiple quantitative trait loci influence intra-specific variation in genital morphology between phylogenetically distinct lines of Drosophila montana. Journal of Evolutionary Biology, 24(9), 1879–1886.

    Article  PubMed  Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55(1), 421–438.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, A. M., & Porter, A. H. (1989). The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Annual Review of Entomology, 34(1), 231–245.

    Article  Google Scholar 

  • Simmons, L. W., & Garcia-Gonzalez, F. (2011). Experimental coevolution of male and female genital morphology. Nature Communications, 2, 374.

    Article  CAS  PubMed  Google Scholar 

  • Siva-Jothy, M. T. (2006). Trauma, disease and collateral damage: conflict in cimicids. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361(1466), 269–275.

    Article  CAS  PubMed Central  Google Scholar 

  • Skuse, F. A. A. (1894). The banded mosquito of Bengal. Indian Museum Notes, 3(5), 20.

    Google Scholar 

  • Sota, T. (2002). Radiation and reticulation: extensive introgressive hybridization in the carabid beetles Ohomopterus inferred from mitochondrial gene genealogy. Population Ecology, 44(3), 145–156.

    Article  Google Scholar 

  • Sota, T., & Kubota, K. (1998). Genital lock-and-key as a selective agent against hybridization. Evolution, 52(5), 1507–1513.

    Article  Google Scholar 

  • Standfuss, M. R. (1896). Handbuch der paläarktischen Gross-Schmetterlinge für Forscher und Sammler. Jena : G. Fischer.

  • Sturtevant, A. H. (1919). A new species closely resembling Drosophila melanogaster. Psyche, 26(6), 153–155.

    Article  Google Scholar 

  • Takahara, B., & Takahashi, K. H. (2015). Genome-wide association study on male genital shape and size in Drosophila melanogaster. PLoS ONE, 10(7), e0132846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami, Y., Nagata, N., Sasabe, M., & Sota, T. (2007). Asymmetry in reproductive isolation and its effect on directional mitochondrial introgression in the parapatric ground beetles Carabus yamato and C. albrechti. Population Ecology, 49(4), 337–346.

    Article  Google Scholar 

  • Tanabe, T., & Sota, T. (2008). Complex copulatory behavior and the proximate effect of genital and body size differences on mechanical reproductive isolation in the millipede genus Parafontaria. The American Naturalist, 171(5), 692–699.

    Article  PubMed  Google Scholar 

  • Tanaka, K. M., Hopfen, C., Herbert, M. R., Schlötterer, C., Stern, D. L., Masly, J. P., et al. (2015). Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana. Genetics, 200(1), 357–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarnic, N. J., & Cassis, G. (2010). Sexual coevolution in the traumatically inseminating plant bug genus Coridromius. Journal of Evolutionary Biology, 23(6), 1321–1326.

    Article  PubMed  Google Scholar 

  • Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16), 3907–3930.

    Article  CAS  PubMed  Google Scholar 

  • True, J. R., Liu, J., Stam, L. F., Zeng, Z.-B., & Laurie, C. C. (1997). Quantitative genetic analysis of divergence in male secondary sexual traits between Drosophila simulans and Drosophila mauritiana. Evolution, 51(3), 816–832.

    Article  Google Scholar 

  • Tsacas, L., & Lachaise, D. (1974). Quatre nouvelles espèces de la Côte-d’Ivoire du genre Drosophila, groupe melanogaster, et discussion de l’origine du sous-groupe melanogaster (Diptera: Drosophilidae). Annales de l’Université d’Abidjan, 7, 193–211.

    Google Scholar 

  • Uhl, G., Nessler, S. H., & Schneider, J. (2007). Copulatory mechanism in a sexually cannibalistic spider with genital mutilation (Araneae: Araneidae: Argiope bruennichi). Zoology, 110(5), 398–408.

    Article  PubMed  Google Scholar 

  • Valdés, A. (2004). Morphology of the penial hooks and vaginal cuticular lining of some dorid nudibranchs (Mollusca, Opisthobranchia). American Malacological Bulletin, 18, 49–54.

    Google Scholar 

  • Vanderplank, F. L. (1948). Experiments in crossbreeding tsetse-flies, Glossina species. Annals of Tropical Medicine and Parasitology, 42(2), 131–152.

    Article  CAS  PubMed  Google Scholar 

  • Veuille, M. (1978). Biologie de la reproduction chez Jaera (Isopode Asellote) II. Evolution des organes reproducteurs femelles. Cahiers de Biologie Marine, 19, 385–395.

    Google Scholar 

  • Ware, A. D., & Opell, B. D. (1989). A test of the mechanical isolation hypothesis in two similar spider species. Journal of Arachnology, 17(2), 149–162.

    Google Scholar 

  • Wiens, J. J. (2001). Widespread loss of sexually selected traits: how the peacock lost its spots. Trends in Ecology & Evolution, 16(9), 517–523.

    Article  Google Scholar 

  • Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54(5), 844–851.

    Article  PubMed  Google Scholar 

  • Wollaston, T. V. (1860). On additions to the Madeiran Coleoptera. Annals and Magazine of Natural History, 3(5), 358–365.

    Google Scholar 

  • Yassin, A., & David, J. R. (2016). Within-species reproductive costs affect the asymmetry of satyrization in Drosophila. Journal of Evolutionary Biology, 29(2), 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Yassin, A., & Orgogozo, V. (2013). Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup. PLoS ONE, 8(2), e57158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Z.-B., Liu, J., Stam, L. F., Kao, C.-H., Mercer, J. M., & Laurie, C. C. (2000). Genetic architecture of a morphological shape difference between two Drosophila species. Genetics, 154(1), 299–310.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am much grateful to an anonymous reviewer, Virginie Orgogozo, and Jean R. David for their constructive criticisms on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Yassin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassin, A. Unresolved questions in genitalia coevolution: bridging taxonomy, speciation, and developmental genetics. Org Divers Evol 16, 681–688 (2016). https://doi.org/10.1007/s13127-016-0286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0286-2

Keywords

Navigation