Skip to main content
Log in

The Evolution of Canalization and Evolvability in Stable and Fluctuating Environments

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Using a multilinear model of epistasis we explore the evolution of canalization (reduced mutational effects) and evolvability (levels of additive genetic variance) under different forms of stabilizing and fluctuating selection. We show that the total selection acting on an allele can be divided into a component deriving from adaptation of the trait mean, a component of canalizing selection favoring alleles that epistatically reduce the effects of other allele substitutions, and a component of conservative selection disfavoring rare alleles. While canalizing selection operates in both stable and fluctuating environments, it may not typically maximize canalization, because it gets less efficient with increasing canalization, and reaches a balance with drift, mutation and indirect selection. Fluctuating selection leads to less canalized equilibria than stabilizing selection of comparable strength, because canalization then becomes influenced by erratic correlated responses to shifting trait adaptation. We conclude that epistatic systems under bounded fluctuating selection will become less canalized than under stabilizing selection and may support moderately increased evolvability if the amplitude of fluctuations is large, but canalization is still stronger and evolvability lower than expected under neutral evolution or under patterns of selection that shift the trait in directions of positive (reinforcing) epistasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez-Castro, J. M., & Carlborg, Ö. (2007). A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics, 176, 1151–1167.

    Article  PubMed  Google Scholar 

  • Álvarez-Castro, J. M., Kopp, M., & Hermisson, J. (2009). Effects of epistasis and the evolution of genetic architecture: Exact results for a 2-locus model. Theoretical Population Biology, 75, 109–122.

    Article  PubMed  Google Scholar 

  • Álvarez-Castro, J. M., & Yang, R.-C. (2012). Multiallelic models of genetic effects and variance decomposition in non-equilibrium populations. Genetica, 139, 119–1134.

    Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112(113), 9–32.

    Article  PubMed  Google Scholar 

  • Barton, N. H., & Turelli, M. (2004). Effects of genetic drift on variance components under a general model of epistasis. Evolution, 58, 2111–2132.

    PubMed  CAS  Google Scholar 

  • Bell, G. (2010). Fluctuating selection: The perpetual renewal of adaptation in variable environments. Philosophical Transactions of the Royal Society of London. Series B, 365, 87–97.

    Article  PubMed  Google Scholar 

  • Blows, M. W., & Brooks, R. (2003). Measuring nonlinear selection. American Naturalist, 162, 815–820.

    Article  PubMed  Google Scholar 

  • Bull, J. J. (1987). Evolution of phenotypic variance. Evolution, 41, 303–315.

    Article  Google Scholar 

  • Bulmer, M. G. (1971). The effect of selection on genetic variability. American Naturalist, 105, 201–211.

    Article  Google Scholar 

  • Bürger, R. (1999). Evolution of genetic variability and the advantage of sex and recombination in a changing environment. Genetics, 153, 1055–1069.

    PubMed  Google Scholar 

  • Bürger, R. (2000). The mathematical theory of selection, recombination, and mutation. Chichester: Wiley.

    Google Scholar 

  • Bürger, R., & Gimelfarb, A. (2002). Fluctuating environments and the role of mutation in maintaining quantitative genetic variation. Genetical Research, 80, 31–46.

    Article  PubMed  CAS  Google Scholar 

  • Bürger, R., & Lynch, M. (1995). Evolution and extinction in a changing environment: A quantitative genetic analysis. Evolution, 49, 151–163.

    Article  Google Scholar 

  • Calsbeek, R., Gosden, T. P., Kuchta, S. R., & Svensson, E. I. (2012). Fluctuating selection and dynamic adaptive landscapes. In E. I. Svensson & R. Calsbeek (Eds.), The adaptive landscape in evolutionary biology (pp. 89–109). Oxford: Oxford University press.

    Google Scholar 

  • Carter, A. J. R., Hermisson, J., & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 68, 179–196.

    Article  PubMed  Google Scholar 

  • Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology, 12, 119–129.

    Article  PubMed  CAS  Google Scholar 

  • de Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri, H. C., Blanchard, J. L., et al. (2003). Evolution and detection of genetic robustness. Evolution, 57, 1959–1972.

    PubMed  Google Scholar 

  • Dempster, E. R. (1955). Maintenance of genetic heterogeneity. Cold Spring Harbor Laboratory of Quantitative Biology, 20, 25–32.

    Article  CAS  Google Scholar 

  • Desai, M. M., Weissman, D., & Feldman, M. W. (2007). Evolution can favor antagonistic epistasis. Genetics, 177, 1001–1010.

    Article  PubMed  Google Scholar 

  • Draghi, J., & Wagner, G. P. (2008). Evolution of evolvability in a developmental model. Evolution, 62, 301–315.

    Article  PubMed  Google Scholar 

  • Draghi, J., & Wagner, G. P. (2009). The evolutionary dynamics of evolvability in a gene network model. Journal of Evolutionary Biology, 22, 599–611.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, I. (2005). Canalization, cryptic variation, and developmental buffering: A critical examination and analytical perspective. In B. Hallgrimsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 131–158). London: Academic press.

    Google Scholar 

  • Earl, D. J., & Deem, M. W. (2004). Evolvability is a selectable trait. Proceedings of the National Academy of Sciences of the United States of America, 101, 11531–11536.

    Article  PubMed  CAS  Google Scholar 

  • Eshel, I., & Matessi, C. (1998). Canalization, genetic assimilation, and preadaptation: A quantitative genetic model. Genetics, 149, 2119–2133.

    PubMed  CAS  Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist, 169, 227–244.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (1976). The theoretical population genetics of variable selection and migration. Annual Review of Genetics, 10, 253–280.

    Article  PubMed  CAS  Google Scholar 

  • Fierst, J. L. (2011). Sexual dimorphism increases evolvability in a genetic regulatory network. Evolutionary Biology, 38, 52–67.

    Article  Google Scholar 

  • Fierst, J. L., & Hansen, T. F. (2010). Genetic architecture and post-zygotic reproductive isolation: Evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model. Evolution, 64, 675–693.

    Article  PubMed  Google Scholar 

  • Flatt, T. (2005). The evolutionary genetics of canalization. The Quarterly Review of Biology, 80, 287–316.

    Article  PubMed  Google Scholar 

  • Frank, S. A., & Slatkin, M. (1990). Evolution in a variable environment. American Naturalist, 136, 244–260.

    Article  Google Scholar 

  • Futuyma, D. J. (1987). On the role of species in anagenesis. American Naturalist, 130, 465–473.

    Article  Google Scholar 

  • Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64, 1865–1884.

    Article  PubMed  Google Scholar 

  • Gardner, A., & Kalinka, A. T. (2006). Recombination and the evolution of mutational robustness. Journal of Theoretical Biology, 241, 707–715.

    Article  PubMed  Google Scholar 

  • Gardner, A., & Zuidema, W. (2003). Is evolvability involved in the origin of modular variation? Evolution, 57, 1448–1450.

    PubMed  Google Scholar 

  • Gavrilets, S. (1993). Equilibria in an epistatic viability model under arbitrary strength of selection. Journal of Mathematical Biology, 31, 397–410.

    Article  Google Scholar 

  • Gavrilets, S., & de Jong, G. (1993). Pleiotropic models of polygenic variation, stabilizing selection, and epistasis. Genetics, 134, 609–625.

    PubMed  CAS  Google Scholar 

  • Gavrilets, S., & Hastings, A. (1994). A quantitative-genetic model for selection on developmental noise. Evolution, 48, 1478–1486.

    Article  Google Scholar 

  • Gerhart, J., & Kirschner, M. (1997). Cells, embryos and evolution: Towards a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. US: Blackwell Science.

    Google Scholar 

  • Gibson, G., & Wagner, G. P. (2000). Canalization in evolutionary genetics: A stabilizing theory? BioEssays, 22, 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H. (1973). Polymorphism in Random Environments. Theoretical Population Biology, 4, 193–195.

    Article  Google Scholar 

  • Gillespie, J. H. (1991). The causes of molecular evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Gimelfarb, A. (1989). Genotypic variation for a quantitative character maintained under stabilizing selection without mutations: Epistasis. Genetics, 123, 217–227.

    PubMed  CAS  Google Scholar 

  • Gingerich, P. D. (1983). Rates of evolution: Effects of time and temporal scaling. Science, 222, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Gosden, T. P., & Svensson, E. I. (2008). Spatial and temporal dynamics in a sexual selection mosaic. Evolution, 62, 845–856.

    Article  PubMed  Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap.

    Google Scholar 

  • Haldane, J. B. S., & Jayakar, D. (1963). Polymorphism due to selection of varying direction. Journal of Genetics, 58, 237–242.

    Article  Google Scholar 

  • Hallsson, L. R., & Björklund, M. (2012a). Selection in a fluctuating environment leads to decreased genetic varation and facilitates evolution of phenotypic plasticity. Journal of Evolutionary Biology, 25, 1275–1290.

    Article  PubMed  CAS  Google Scholar 

  • Hallsson, L. R., & Björklund, M. (2012b). Selection in a fluctuating environment and the evolution of sexual dimorphism in the seed beetle Callosobruchus maculatus. Journal of Evolutionary Biology, 25, 1564–1575.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology Evolution and Systematics, 37, 123–157.

    Article  Google Scholar 

  • Hansen, T. F. (2011). Epigenetics: Adaptation or contingency? In B. Hallgrimsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (pp. 357–376). California: University of California press.

    Google Scholar 

  • Hansen, T. F. (2012). Adaptive landscapes and macroevolutionary dynamics. In E. I. Svensson & R. Calsbeek (Eds.), The adaptive landscape in evolutionary biology (pp. 205–226). Oxford Pp: Oxford University press.

    Google Scholar 

  • Hansen, T. F., Álvarez-Castro, J. M., Carter, A. J. R., Hermisson, J., & Wagner, G. P. (2006). Evolution of genetic architecture under directional selection. Evolution, 60, 1523–1536.

    PubMed  Google Scholar 

  • Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 130–150). Oxford: Oxford University Press.

    Google Scholar 

  • Hansen, T. F., Pélabon, C., & Houle, D. (2011). Heritability is not evolvability. Evolutionary Biology, 38, 258–277.

    Article  Google Scholar 

  • Hansen, T. F., & Wagner, G. P. (2001a). Modeling genetic architecture: A multilinear theory of gene interaction. Theoretical Population Biology, 59, 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. F., & Wagner, G. P. (2001b). Epistasis and the mutation load: A measurement-theoretical approach. Genetics, 158, 477–485.

    PubMed  CAS  Google Scholar 

  • Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 17, 20–29.

    Article  PubMed  Google Scholar 

  • Hendry, A. P., & Kinnison, M. T. (1999). Perspective: The pace of modern life: Measuring rates of contemporary microevolution. Evolution, 53, 1637–1653.

    Article  Google Scholar 

  • Hereford, J. (2009). A quantitative survey of local adaptation and fitness trade-offs. American Naturalist, 173, 579–588.

    Article  PubMed  Google Scholar 

  • Hereford, J., Hansen, T. F., & Houle, D. (2004). Comparing strengths of directional selection: How strong is strong? Evolution, 58, 2133–2143.

    PubMed  Google Scholar 

  • Hermisson, J., Hansen, T. F., & Wagner, G. P. (2003). Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. American Naturalist, 161, 708–734.

    Article  PubMed  Google Scholar 

  • Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168, 2271–2284.

    Article  PubMed  Google Scholar 

  • Hoffmann, A. A., & Parsons, P. A. (1997). Extreme environmental change and evolution. Cambridge: Cambridge University press.

    Google Scholar 

  • Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195–204.

    PubMed  CAS  Google Scholar 

  • Houle, D. (1998). How should we explain variation in the genetic variance of traits? Genetica, 102(103), 241–253.

    Article  PubMed  Google Scholar 

  • Houle, D., Morikawa, B., & Lynch, M. (1996). Comparing mutational variabilities. Genetics, 143, 1467–1483.

    PubMed  CAS  Google Scholar 

  • Jones, A. G., Arnold, S. J., & Bürger, R. (2004). Evolution and stability of the G-matrix on a landscape with a moving optimum. Evolution, 58, 1639–1654.

    PubMed  Google Scholar 

  • Jones, A. G., Arnold, S. J., & Bürger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution, 61, 727–745.

    Article  PubMed  Google Scholar 

  • Jones, A. G., Bürger, R., Arnold, S. J., Hohenlohe, A., & Uyeda, J. C. (2012). The effects of stochastic and episodic movement of the optimum on the evolution of the G-matrix and the response of the trait mean to selection. Journal of Evolutionary Biology, 25, 2210–2231.

    Article  PubMed  Google Scholar 

  • Karlin, S., & Liberman, U. (1974). Random temporal variation in selection intensities: Case of large population size. Theoretical Population Biology, 6, 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Kawecki, T. J. (2000). The evolution of genetic canalization under fluctuating selection. Evolution, 54, 1–12.

    PubMed  CAS  Google Scholar 

  • Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignnieri, S. N., Hill, C. E., et al. (2001). The strength of phenotypic selection in natural populations. American Naturalist, 157, 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Kinnison, M. T., & Hendry, A. P. (2001). The pace of modern life II: From rates of contemporary microevolution to pattern and process. Genetica, 112(113), 145–164.

    Article  PubMed  Google Scholar 

  • Kirzhner, V. M., Korol, A. B., & Nevo, E. (1998). Complex limiting behavior of multilocus systems in cyclical environments. Journal of Theoretical Biology, 190, 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S., & Yampolsky, L. Y. (1996). High genetic variability under the balance between symmetric mutation and fluctuating stabilizing selection. Genetical Research, 68, 157–164.

    Article  Google Scholar 

  • Kopp, M., & Hermisson, J. (2006). The evolution of genetic architecture under frequency-dependent disruptive selection. Evolution, 60, 1537–1550.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.

    Article  Google Scholar 

  • Lande, R. (1977). The influence of the mating system on the maintenance of genetic variability in polygenic characters. Genetics, 86, 485–498.

    PubMed  CAS  Google Scholar 

  • Lande, R. (2007). Expected relative fitness and the adaptive topography of fluctuating selection. Evolution, 61, 1835–1846.

    Article  PubMed  Google Scholar 

  • Lande, R. (2008). Adaptive topography of fluctuating selection in a Mendelian population. Journal of Evolutionary Biology, 21, 1096–1105.

    Google Scholar 

  • Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22, 1435–1446.

    Article  PubMed  Google Scholar 

  • Layzer, D. (1980). Genetic variation and progressive evolution. American Naturalist, 115, 809–826.

    Article  Google Scholar 

  • Le Rouzic, A., & Álvarez-Castro, J. M. (2008). Estimation of genetic effects and genotype–phenotype maps. Evolutionary Bioinformatics, 4, 225–235.

    Google Scholar 

  • Le Rouzic, A., & Carlborg, Ö. (2008). Evolutionary potential of hidden genetic variation. Trends in Ecology & Evolution, 23, 33–37.

    Article  Google Scholar 

  • Le Rouzic, A., Houle, D., & Hansen, T. F. (2011). A modeling framework for the analysis of artificial-selection time series. Genetical Research, 93, 155–173.

    Article  Google Scholar 

  • Lee, C. E., & Gelembiuk, G. W. (2008). Evolutionary origins of invasive populations. Evolutionary Applications, 1, 427–448.

    Article  Google Scholar 

  • Levins, R. (1962). Theory of fitness in a heterogeneous environment, I. The fitness set and adaptive function. American Naturalist, 96, 361–373.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in changing environments. Princeton: Princeton University press.

    Google Scholar 

  • Liberman, U., & Feldman, M. W. (2005). On the evolution of epistasis I: Diploids under selection. Theoretical Population Biology, 67, 141–160.

    Article  PubMed  Google Scholar 

  • Liberman, U., & Feldman, M. W. (2006). Evolutionary theory for modifiers of epistasis using a general symmetric model. Proceedings of the National Academy of Sciences of the United States of America, 103, 19402–19406.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, U., & Feldman, M. (2008). On the evolution of epistasis III: The haploid case with mutation. Theoretical Population Biology, 73, 307–316.

    Article  PubMed  Google Scholar 

  • Liberman, U., Puniyani, A., & Feldman, M. W. (2007). On the evolution of epistasis II. A generalized Wright-Kimura framework. Theoretical Population Biology, 71, 230–238.

    Article  PubMed  Google Scholar 

  • Lynch, M. (1988). The rate of polygenic mutation. Genetics Research (Camb), 51, 137–148.

    Article  CAS  Google Scholar 

  • Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist, 136, 727–741.

    Article  Google Scholar 

  • Lynch, M. (1993). Neutral models of phenotypic evolution. In L. Real (Ed.), Ecological genetics (pp. 86–108). Princeton: Princeton University Press.

    Google Scholar 

  • Lynch, M. (2007a). The origins of genome architecture. Sunderland, MA: Sinauer.

    Google Scholar 

  • Lynch, M. (2007b). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8597–8604.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., & Hill, W. G. (1986). Phenotypic evolution by neutral mutation. Evolution, 40, 915–935.

    Article  Google Scholar 

  • Masel, J. (2005). Evolutionary capacitance may be favored by natural selection. Genetics, 170, 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  • Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36, 377–385.

    Article  Google Scholar 

  • Moreno, G. (1994). Genetic architecture, genetic behavior, and character evolution. Annual Review of Ecology and Systematics, 25, 31–45.

    Article  Google Scholar 

  • Morrissey, M. B., & Hadfield, J. D. (2012). Directional selection in temporaly replicated studies is remarkably consistent. Evolution, 66, 435–442.

    Article  PubMed  Google Scholar 

  • Paenke, I., Sendhoff, B., & Kawecki, T. J. (2007). Influence of plasticity and learning on evolution under directional selection. American Naturalist, 170, E47–E58.

    Article  PubMed  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of the Royal Society. Section B, 278, 1903–1912.

    Article  Google Scholar 

  • Pavlicev, M., Le Rouzic, A., Cheverud, J. M., Wagner, G. P., & Hansen, T. F. (2010). Directionality of epistasis in a murine intercross population. Genetics, 185, 1489–1505.

    Article  PubMed  CAS  Google Scholar 

  • Pélabon, C., Hansen, T. F., Carter, A. J. R., & Houle, D. (2010). Evolution of variation and variability under fluctuating, stabilizing, and disruptive selection. Evolution, 64, 1912–1925.

    PubMed  Google Scholar 

  • Pigliucci, M. (2008). Opinion—Is evolvability evolvable? Nature Reviews Genetics, 9, 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Proulx, S. R., & Phillips, P. C. (2005). The opportunity for canalization and the evolution of genetic networks. American Naturalist, 165, 147–162.

    Article  PubMed  Google Scholar 

  • Rendel, R. (1967). Canalization and gene control. London: Logos press.

    Google Scholar 

  • Revell, L. J. (2007). The G Matrix under fluctuating correlational mutation and selection. Evolution, 61, 1857–1872.

    Article  PubMed  Google Scholar 

  • Rice, S. H. (1998). The evolution of canalization and the breaking of von Baer’s laws: Modeling the evolution of development with epistasis. Evolution, 52, 647–656.

    Article  Google Scholar 

  • Rice, S. H. (2002). A general population genetic theory for the evolution of developmental interactions. Proceedings of the National Academy of Sciences of the United States of America, 99, 15518–15523.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Rutherford, S. L. (2000). From genotype to phenotype: Buffering mechanisms and the storage of genetic information. BioEssays, 22, 1095–1105.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, S. L., & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396, 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, A., & Ellner, S. (1997). Quantitative genetic variance maintained by fluctuating selection with overlapping generations: Variance components and covariances. Evolution, 51, 682–696.

    Article  Google Scholar 

  • Scharloo, W. (1991). Canalization: Genetic and developmental aspects. Annual Review of Ecology and Systematics, 22, 65–93.

    Article  Google Scholar 

  • Scharloo, W., Hoogmoed, M. S., & Ter Kuile, A. (1967). Stabilizing and disruptive selection on a mutant character in Drosophila. I. The phenotypic variance and its components. Genetics, 36, 709–726.

    Google Scholar 

  • Scharloo, W., Zweep, A., Schuitema, K. A., & Wijnstra, J. G. (1972). Stabilizing and disruptive selection on a mutant character in Drosophila. IV. Selection on sensitivity to temperature. Genetics, 71, 551–566.

    PubMed  CAS  Google Scholar 

  • Siepielski, A. M., DiBattista, J. D., & Carlson, S. M. (2009). It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters, 12, 1261–1276.

    Article  PubMed  Google Scholar 

  • Slatkin, M., & Lande, R. (1976). Niche width in a fluctuating environment—Density independent model. American Naturalist, 110, 31–55.

    Article  Google Scholar 

  • Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J., & Blows, M. W. (2008). Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing? Evolution, 62, 2435–2440.

    Article  PubMed  Google Scholar 

  • Svardal, H., Rueffler, C., & Hermisson, J. (2011). Comparing environmental and genetic variance as adaptive response to fluctuating selection. Evolution, 65, 2492–2513.

    Article  PubMed  Google Scholar 

  • Travis, J. (1989). The role of optimizing selection in natural populations. Annual Review of Ecology and Systematics, 20, 279–296.

    Article  Google Scholar 

  • True, J. R., & Haag, E. S. (2001). Developmental systems drift and flexibility in evolutionary trajectories. Evolution and Development, 3, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Turelli, M. (1981). Temporally varying selection on multiple alleles—A diffusion analysis. Journal of Mathematical Biology, 13, 115–129.

    Article  Google Scholar 

  • Turelli, M. (1984). Heritable Genetic variation via mutation-selection balance: Lerch’s Zeta meets the abdominal bristle. Theoretical Population Biology, 25, 138–193.

    Article  PubMed  CAS  Google Scholar 

  • Turelli, M. (1988). Population genetic models for polygenic variation and evolution. In B. S. Weir, E. J. Eisen, M. M. Goodman, & G. Namkoong (Eds.), Proceedings of the second international conference on quantitative genetics (pp. 601–618).

  • Uyeda, J. C., Hansen, T. F., Arnold, S. J., & Pienaar, J. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences of the United States of America, 108, 15908–15913.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563–565.

    Article  Google Scholar 

  • Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118–126.

    Article  Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes. New York: MacMillan Co.

    Google Scholar 

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton university press.

    Google Scholar 

  • Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proc. R. Biol. Soc., 275, 91–100.

    Article  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., Booth, G., & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution, 51, 329–347.

    Article  Google Scholar 

  • Wagner, G. P., & Bürger, R. (1985). On the evolution of dominance modifiers II. A non-equilibrium approach to the evolution of genetic systems. Journal of Theoretical Biology, 113, 475–500.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Mezey, J. (2000). Modeling the evolution of genetic architecture: A continuum of alleles model with pairwise A×A epistasis. Journal of Theoretical Biology, 203, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D., & Peck, J. R. (1999). Sex and adaptation in a changing environment. Genetics, 153, 1041–1053.

    PubMed  CAS  Google Scholar 

  • Weinreich, D. M. (2005). The rank ordering of genotypic fitness values predicts geneticc onstraint on natural selection on landscapes lacking sign epistasis. Genetics, 171, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Weinreich, D. M., Watson, R. A., & Chao, L. (2005). Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution, 59, 1165–1174.

    PubMed  CAS  Google Scholar 

  • Williams, G. C. (1992). Natural selection: Domains, levels, and challenges. Oxford: Oxford University press.

    Google Scholar 

  • Wright, S. (1935). Evolution of populations in approximate equilibrium. J. Genet., 30, 257–266.

    Article  Google Scholar 

  • Yukilevich, R., Lachance, J., Aoki, F., & True, J. R. (2008). Long-term adaptation of epistatic genetic networks. Evolution, 62, 2215–2235.

    Article  PubMed  Google Scholar 

  • Zhang, X.-S. (2005). Evolution and maintenance of the environmental component of the phenotypic variance: Benefit of plastic traits under changing environments. American Naturalist, 166, 569–580.

    Article  PubMed  Google Scholar 

  • Zhang, X.-S. (2008). Increase in quantitative variation after exposure to environmental stresses and/or introduction of a major mutation: G × E interaction and epistasis or canalization. Genetics, 180, 687–695.

    Article  PubMed  Google Scholar 

  • Zhang, X.-S., & Hill, W. G. (2005). Evolution of the environmental component of the phenotypic variance: Stabilizing selection in changing environments and the cost of homogeneity. Evolution, 59, 1237–1244.

    PubMed  Google Scholar 

  • Zhang, X.-S., & Hill, W. G. (2008). Mutation-selection balance for environmental variance. American Naturalist, 171, 394–399.

    Article  PubMed  Google Scholar 

  • Zhang, X.-S., & Hill, W. G. (2010). Maintenance of variation in quantitative traits in the context of the Price equation. Theoretical Population Biology, 77, 14–22.

    Article  PubMed  Google Scholar 

  • Zhivotovsky, L. A., & Gavrilets, S. (1992). Quantitative variability and multilocus polymorphism under epistatic selection. Theoretical Population Biology, 42, 254–283.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norwegian Research Council through grant 177857 to TFH, the European Research Council through grant ERG 256507 to ALR, and the Spanish Ministry of Science and Innovation through grant BFU2010-20003 to JMAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Hansen.

Appendices

Appendix 1: Multiplicative Selection

Here we derive some base-line predictions for the long-term multiplicative fitness function under different types of fluctuating selection. Consider first Gaussian selection around a fluctuating optimum

$$ W\left( {z;t} \right) = k_{t} \,{\text{Exp}}\left[ { - s(z - \theta_{t} )^{2} } \right], $$
(14)

where θ t is the value of the optimum in generation t and k t an arbitrary time-dependent variable. The multiplicative relative fitness over T generations is then

$$ {\text{Exp}}\left[ {\sum\limits_{t} {Ln[k_{t} ] - \sum\limits_{t} {Ln[\overline{W} {\text{(}}t{\text{)}}] - sT(z - \overline{\theta } )^{2} - 2s(z - \overline{\theta } )\sum\limits_{t} {(\theta _{t} - \overline{\theta } ) - s\sum\limits_{t} {(\theta _{t} - \overline{\theta } )^{2} } } } } } \right] = Exp\left[ {\sum\limits_{t} {Ln\left[ {k_{t} } \right] - Ln\left[ {\overline{W} (t)} \right]} } \right]Exp\left[ { - sT(z - \overline{\theta } )^{2} + 2(z - \overline{\theta } )} \sum\limits_{{_{t} }} {(\theta _{t} - \overline{\theta } )/T + \sum\limits_{{_{t} }} {(\theta _{{_{t} }} - \overline{\theta } )^{2} /T} } \right], $$
(15)

where \( \bar{\theta } \) is the mean optimum over the fluctuations. In the limit when T → ∞ this reduces to

$$ \mathop {Lim}\limits_{T \to \infty } \prod\nolimits_{t} {\frac{W(z;t)}{{\bar{W}(t)}}} = KExp\left[ { - sT(z - \bar{\theta })^{2} + Var[\theta ]} \right]\sim Exp\left[ { - sT(z - \bar{\theta })^{2} } \right], $$
(16)

where K is a constant and Var[θ] is the variance of the optimum over the fluctuations. Hence, the multiplicative relative fitnesses depend only on the average of the fluctuating optimum and not on the details of its distribution. They are the same with constant and varying optima, and we predict that the long-term effects of fluctuating gaussian optima should be similar to long-term stabilizing selection. If also the strength of selection is fluctuating, the situation is slightly more complicated. In this case

$$ \mathop {Lim}\limits_{T \to \infty } \prod\nolimits_{t} {\frac{W(z;t)}{{\bar{W}(t)}}} \sim Exp\left[ { - \bar{s}T\left( {\left( {z - \bar{\theta }} \right)^{2} + 2T\left( {z - \bar{\theta }} \right)Cov\left[ {s_{t} ,\theta_{t} } \right]} \right)} \right], $$
(17)

where \( \bar{s} \) = Σ t s t /T is the average strength of selection. Hence, if there is a covariance between the changes of the optimum and the strength of stabilizing selection on that optimum, then this will induce a component of selection in the direction in which the deviances are associated with stronger selection. This shifts the long-term optimum to \( \bar{\theta } \) + Cov[s t , θ t ]/\( \bar{s} \). Note that this implies that there are no effects of fluctuations in the strength of selection if the optimum is fixed.

In this argument we can see that the extra stabilizing selection induced by variance in the selection gradient (Eq. 3) is compensated by the fluctuations shifting the population into more convex areas of the fitness landscape, which happens because the Gaussian fitness function is most concave at the optimum. If we consider quadratic stabilizing selection of the form

$$ W\left( {z;t} \right) = k_{t} \left( {1 - s(z - \theta_{t} )^{2} } \right), $$
(18)

the first and second derivatives are −2s(z − θ t ) and −2s. Hence, from equation 1 we see that the second derivative of the multiplicative fitness function will be proportional to −2s − 4s 2Var[θ t ], which implies that the strength of stabilizing selection will increase with the variance of fluctuations in the optimum (as long as the occurence of non-positive fitnesses is negligible).

Similar effects happen with fluctuating directional selection. Consider first a fitness function of the form

$$ W\left( {z;t} \right) = k_{t} \left( {1 + s_{t} z} \right), $$
(19)

where s t fluctuates such that the population experience no net long-term directional selection. In this case the long-term multiplicative function has a second derivative proportional to \( - \Upsigma_{t} s_{t}^{2} /\left( {1 + s_{t} z} \right)^{2} \), which implies that the strength of stabilizing selection will increase with increasing fluctuations in s t . The optimum will depend on the distribution of s t , but if this has mean zero, the optimum will be at z = 0. With exponential directional selection (W(zt) = Exp[s t z]), which is inherently convex, the multiplicative fitness function will be flat if the s t average to zero.

A slightly different result follows from an alternating linear fitness function of the type

$$ W\left( {z;t} \right) = 1 + s_{t} \left( {z - z_{t} } \right), $$
(20)

where \( \bar{z}_{t} \) is the mean of z in generation t. This form ensures that the selection gradient is always equal to s t and is hence a model of a fluctuating linear selection gradient. In this case the mean fitness in each generation is always unity, so that the cumulative fitness function is

$$ \prod\nolimits_{t} {\frac{W(z;t)}{{\bar{W}(t)}}} = \prod\nolimits_{t} {\left( {1 + s_{t} \left( {z_{t} - \bar{z}_{t} } \right)} \right)} = Exp\left[ {\Upsigma_{t} Ln\left[ {1 + s_{t} \left( {z_{t} - \bar{z}_{t} } \right)} \right]} \right] $$
(21)

By assuming no net directional selection in the sense that \( \bar{s} \) = 0, that selection within each generation is weak in the sense that |st(z − \( \bar{z}_{t} \))| < 1, and considering only the two first terms in a series expansion of the logarithm we get

$$ \prod\nolimits_{t} {\frac{W(z;t)}{{\bar{W}(t)}}} \sim Exp\left[ { - \tfrac{1}{2}T\sigma_{s}^{2} (z - \bar{z})} \right], $$
(22)

where \( \sigma_{s}^{ 2} \) is the temporal variance of the selection coefficient and \( \bar{z} = \Upsigma_{t} {{\bar{z}_{t} } \mathord{\left/ {\vphantom {{\bar{z}_{t} } T}} \right. \kern-0pt} T} \) is the mean phenotype over the history of the population. Hence, the multiplicative fitness landscape approximates normalizing selection around the average mean phenotype during the period we consider. This resembles “normalizing” selection (Travis 1989) favoring the current mean. Even if there is no net directional selection, slight random changes in the mean will be preserved, so that the mean can slowly drift away from its ancestral value in a Brownian-motion-like manner. To understand how this normalizing selection arises, consider a situation in which the selection alternates every generation between positive and negative, but is always equally strong such that the mean shifts back and forth between two values m 1 and m 2. In this situation phenotypic values intermediate between m 1 and m 2 will always have higher fitness than the current mean.

Appendix 2: Selection on a Decanalizing Gene Substitution

In this appendix we compute the fitness effects of a canalizing or decanalizing substitution at a locus, x. The phenotype is

$$ z = z_{r} + \Upsigma_{i} {}^{i}y + \Upsigma_{i} \Upsigma_{j > i} {}^{ij}\varepsilon {}^{i}y{}^{j}y + \Upsigma_{i} \Upsigma_{j > i} \Upsigma_{k > j} {}^{ijk}\varepsilon {}^{i}y{}^{j}y{}^{k}y + \cdots + {}^{g \to x}f\,x = z_{x = 0} + {}^{g \to x}f\,x $$
(23)

where x is the reference effect of the substitution, z x=0 is the phenotype when x = 0, and the epistasis factor, gx f = 1 + Σ i ixε i y + Σ i Σ j>i ijxε i y j y +···, describes the epistatic effects on x from the rest of the genome, \( g = \{ {}^{1}y, \ldots ,{}^{n}y\} \). Hence, the term gx fx describes the effect of the substitution in the genetic background of g. We will study a substitution with effect x = 1. This sets a scale and entails no loss of generality. We allow epistasis of any order. Assuming a quadratic fitness function W(z) = 1 − s(z − θ)2, the change from x = 0 to x = 1 gives a fitness change of

$$ {\text{E}}_{g} \left[ {W\left( z \right)|x = 1} \right] - {\text{E}}_{g} \left[ {W\left( z \right)|x = 0} \right] = - s{\text{E}}_{g} \left[ {2{}^{g \to x}f\left( {z_{x = 0} - \theta } \right) + {}^{g \to x}f^{2} } \right], $$
(24)

where E g refers to expectations taken over the reference effects of the loci in g. Assuming linkage equilibrium, this can be written

$$ \begin{gathered} {\text{E}}_{g} \left[ {W\left( z \right)|x =1}\right] - {\text{E}}_{g} \left[ {W\left( z \right)|x = 0}\right] =- s{\text{E}}_{g} \left[ {2^{g \to x} f\left( {z - \theta} \right)+\,{^{g \to x}f^{2}} \left( {1 - 2\bar{x}} \right)} \right]\hfill \\\quad = - 2s\left( {{\bar{\text{z}}} - \theta}\right){\text{E}}_{g} \left[ {{}^{g \to x}f} \right] -{2}s{\text{Cov}}_{g} \left[ {z, {^{g \to x}f}} \right] - s\left( {1-2\bar{x}} \right)\left( {{\text{E}}_{g} \left[ {^{g \to x}f}\right]^{2} + {\text{Var}}_{g} \left[ {^{g \to x}f}\right]}\right) \hfill \\ \quad = - 2s\left( {{\bar{\text{z}}} -\theta }\right){\text{E}}_{g} \left[{}^{g \to x}f \right]- {2}s{\text{Cov}}_{g}\left[ z_{x = 0} ,{}^{g \to x}f \right] -s{\text{Var}}_{g} \left[ {{}^{g\to x}f} \right] - s\left( { 1-2\bar{x}} \right){\text{E}}_{g}\left[ {{}^{g \to x}f} \right]^{2}, \hfill \\\end{gathered} $$
(25)

where the last step uses Cov g [z, gx f] = Cov g [z x=0  + gx f x, gx f] = Cov g [z x=0, gx f] + \( \bar{x} \)Var g [gx f].

In the bilinear case we can write

$$ {\text{Cov}}_{g} \left[ {z_{x = 0} ,{}^{g \to x}f} \right] = \sum_{i} {}^{ix}\varepsilon {\text{E}}_{g} \left[ {^{g \to x} f} \right]{}^{i}v, $$
(26a)
$$ {\text{Var}}_{g} \left[ {{}^{g \to x}f} \right] = \Upsigma_{i} {}^{ix}\varepsilon^{2} \,{}^{i}v, $$
(26b)

where i v = Var[i y], and gx f = 1 + Σ j ijε j y. This yields Eq. 7 in the main text. Returning to the general multilinear case, we simplify the equations by using \( \bar{g} = \{ {}^{1}\bar{y}, \ldots ,{}^{n}\bar{y}\} \) and x = 0 as reference genotype. Then

$$ {\text{Cov}}_{g} \left[ {z_{x = 0} ,{}^{g \to x}f} \right] = \Upsigma_{i} {}^{ix}\varepsilon {}^{i}v + \Upsigma_{i} \Upsigma_{j > i} {}^{ijx}\varepsilon {}^{ij}\varepsilon {}^{i}v{}^{j}v + \Upsigma_{i} \Upsigma_{j > i} \Upsigma_{k > j} {}^{ijkx}\varepsilon {}^{ijk}\varepsilon {}^{i}v{}^{j}v{}^{k}v + \cdots , $$
(27a)
$$ {\text{Var}}_{g} \left[ {{}^{g \to x}f} \right] = \Upsigma_{i}^{ix} \varepsilon^{2} \,{}^{i}v + \Upsigma_{i} \Upsigma_{j} {}^{ijk}\varepsilon^{2}\, {}^{i}v{}^{j}v + \Upsigma_{i} \Upsigma_{j} \Upsigma_{k} {}^{ijkx}\varepsilon^{2} \,{}^{i}v{}^{j}v{}^{k}v + \cdots , $$
(27b)

and then

$$ \begin{gathered} {\text{E}}_{g} \left[ {W\left( z \right)|x = 1} \right] - {\text{E}}_{g} \left[ {W\left( z \right)|x = 0} \right] \hfill \\ \quad = - 2s\left( {\bar{z} - \theta } \right) - { 2}s{\text{Cov}}_{g} \left[ {z_{x = 0} ,{}^{g \to x}f} \right] - s{\text{Var}}_{g}\left[ {{}^{g \to x}f} \right] - s\left( { 1- 2\bar{x}} \right) \hfill \\ \quad = - 2s\left( {\bar{z} - \theta } \right) - s\Upsigma_{i} {}^{ix}\varepsilon \left( {^{ix} \varepsilon + 2} \right){}^{i}v - s\Upsigma_{i} \Upsigma_{j} {}^{ijx}\varepsilon \left( {^{ijx} \varepsilon + {}^{ij}\varepsilon } \right){}^{i}v^{j} v \hfill \\ \quad - s\Upsigma_{i} \Upsigma_{j} \Upsigma_{k} {}^{ijkx}\varepsilon \left( {^{ijkx} \varepsilon + {^{ijk}\varepsilon} /2} \right){}^{i}v{}^{j}v{}^{k}v - s\left( {{\text{Higher - order}}\;{\text{terms}}} \right) - s\left( {1 \, - 2\bar{x}} \right), \hfill \\ \end{gathered} $$
(28)

where the higher-order terms have the form Σ J Jxε(Jxε + Jε/2 k−2) Π j∈J j v, where J is the set of all k-tuples of indices from g. Restricting to pairwise epistasis yields Eq. 8 in the main text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Rouzic, A., Álvarez-Castro, J.M. & Hansen, T.F. The Evolution of Canalization and Evolvability in Stable and Fluctuating Environments. Evol Biol 40, 317–340 (2013). https://doi.org/10.1007/s11692-012-9218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9218-z

Keywords

Navigation