Skip to main content
Log in

Heritability is not Evolvability

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Short-term evolutionary potential depends on the additive genetic variance in the population. The additive variance is often measured as heritability, the fraction of the total phenotypic variance that is additive. Heritability is thus a common measure of evolutionary potential. An alternative is to measure evolutionary potential as expected proportional change under a unit strength of selection. This yields the mean-scaled additive variance as a measure of evolvability. Houle in Genetics 130:195–204, (1992) showed that these two ways of scaling additive variance are often inconsistent and can lead to different conclusions as to what traits are more evolvable. Here, we explore this relation in more detail through a literature review, and through theoretical arguments. We show that the correlation between heritability and evolvability is essentially zero, and we argue that this is likely due to inherent positive correlations between the additive variance and other components of phenotypic variance. This means that heritabilities are unsuitable as measures of evolutionary potential in natural populations. More generally we argue that scaling always involves non-trivial assumptions, and that a lack of awareness of these assumptions constitutes a systemic error in the field of evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal, A. A., Conner, J. K., Johnson, M. T. J., & Wallsgrove, R. (2002). Ecological genetics of an induced plant defence against herbivores: Additive genetic variance and costs of phenotypic plasticity. Evolution, 56, 2206–2213.

    PubMed  Google Scholar 

  • Agrawal, A. F., & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation. Proceedings of the Royal Society B: Biological Sciences, 276, 1182–1191.

    Article  Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112(113), 9–32.

    Article  PubMed  Google Scholar 

  • Arnold, S. J., & Phillips, P. C. (1999). Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution, 53, 1516–1527.

    Article  Google Scholar 

  • Ashman, T. L. (2003). Constraints on the evolution of males and sexual dimorphism: Field estimates of genetic architecture of reproductive traits in three populations of gynodioecious Fragaria virginiana. Evolution, 57, 2012–2025.

    PubMed  Google Scholar 

  • Asteles, P. A., Moore, A. J., & Preziosi, R. F. (2006). A comparison of methods to estimate cross-environment genetic correlations. Journal of Evolutionary Biology, 19, 114–122.

    Article  Google Scholar 

  • Bacigalupe, L. D., Nespolo, R. F., Bustamante, D. M., & Bozinovic, F. (2004). The quantitative genetics of sustained energy budget in a wild mouse. Evolution, 58, 421–429.

    PubMed  Google Scholar 

  • Barton, N. H., & Turelli, M. (1989). Evolutionary quantitative genetics: how little do we know? Annual Review of Genetics, 23, 337–370.

    Article  PubMed  CAS  Google Scholar 

  • Beraldi, D., Mcrae, A. F., Gratten, J., Slate, J., Visscher, P. M., & Pemberton, J. M. (2007). Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population. Evolution, 61, 1403–1416.

    Article  PubMed  Google Scholar 

  • Berwaerts, K., Matthysen, E., & Van Dyck, H. (2008). Take-off flight performance in the butterfly Pararge aegeria relative to sex and morphology: A quantitative genetic assessment. Evolution, 62, 2525–2533.

    Article  PubMed  Google Scholar 

  • Birkhead, T. R., Pellatt, E. J., Matthews, I. M., Roddis, N. J., Hunter, F. M., McPhie, F., et al. (2006). Genic capture and the genetic basis of sexually selected traits in the zebra finch. Evolution, 60, 2389–2398.

    PubMed  Google Scholar 

  • Blows, M. W. (2007). A tale of two matrices: Multivariate approaches in evolutionary biology. Journal of Evolutionary Biology, 20, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Blows, M. W., Chenoweth, S. F., & Hine, E. (2004). Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. The American Naturalist, 163, 329–340.

    Article  PubMed  Google Scholar 

  • Blows, M. W., & Higgie, M. (2003). Genetic constraints on the evolution of mate recognition under natural selection. The American Naturalist, 161, 240–253.

    Article  PubMed  Google Scholar 

  • Blows, M. W., & Hoffmann, A. A. (2005). A reassessment of genetic limits to evolutionary change. Ecology, 86, 1371–1384.

    Article  Google Scholar 

  • Blows, M. W., & Walsh, B. (2009). Spherical cows grazing in flatland: Constraints to selection and adaptation. In J. Vanderwerf, H. U. Graser, R. Frankham, & C. Gondro (Eds.), Adaptation and fitness in animal populations – evolutionary and breeding perspectives on genetic resource management. Berlin: Springer.

    Google Scholar 

  • Boake, C. R. B., & Konigsberg, L. (1998). Inheritance of male courtship behavior, aggressive success, and body size in Drosophila silvestris. Evolution, 52, 1487–1492.

    Article  Google Scholar 

  • Brandt, L. S. E., & Greenfield, M. D. (2004). Condition-dependent traits and the capture of genetic variance in male advertisement song. Journal of Evolutionary Biology, 17, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Brodie, E. D. (1993). Homogeneity of the genetic variance-covariance matrix for antipredator traits in 2 natural-populations of the garter snake Thamnophis ordinoides. Evolution, 47, 844–854.

    Article  Google Scholar 

  • Brookfield, J. F. Y. (2009). Evolution and evolvability: Celebration Darwin 200. Biology Letters, 5, 44–46.

    Article  PubMed  Google Scholar 

  • Bryant, E. H., & Meffert, L. M. (1995). An analysis of selectional response in relation to a population bottleneck. Evolution, 49, 626–634.

    Article  Google Scholar 

  • Bürger, R. (2000). The mathematical theory of selection, recombination, and mutation. Chichester: Wiley.

    Google Scholar 

  • Burton, G. W. (1952). Quantitative inheritance in grasses. Proceedings of the Sixth International Grassland Congress, 6, 277–283.

    Google Scholar 

  • Cadee, N. (2000). Genetic and environmental effects on morphology and fluctuating asymmetry in nestling barn swallows. Journal of Evolutionary Biology, 13, 359–370.

    Article  Google Scholar 

  • Campbell, D. R. (1996). Evolution of floral traits in a hermaphroditic plant: Field measurements of heritabilities and genetic correlations. Evolution, 50, 1442–1453.

    Article  Google Scholar 

  • Campbell, D. R. (1997). Genetic and environmental variation in life-history traits of a monocarpic perennial: A decade-long field experiment. Evolution, 51, 373–382.

    Article  Google Scholar 

  • Carter, A. J. R., Hermisson, J., & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 68, 179–196.

    Article  PubMed  Google Scholar 

  • Caruso, C. M. (2004). The quantitative genetics of floral trait variation in Lobelia: Potential constraints on adaptive evolution. Evolution, 58, 732–740.

    PubMed  Google Scholar 

  • Caruso, C. M., Maherali, H., Mikulyuk, A., Carlson, K., & Jackson, R. B. (2005). Genetic variance and covariance for physiological traits in Lobelia: Are there constraints on adaptive evolution? Evolution, 59, 826–837.

    PubMed  Google Scholar 

  • Charmantier, A., Kruuk, L. E. B., Blondel, J., & Lambrechts, M. M. (2004a). Testing for microevolution in body size in three blue tit populations. Journal of Evolutionary Biology, 17, 732–743.

    Article  PubMed  CAS  Google Scholar 

  • Charmantier, A., Kruuk, L. E. B., & Lambrechts, M. M. (2004b). Parasitism reduces the potential for evolution in a wild bird population. Evolution, 58, 203–206.

    PubMed  Google Scholar 

  • Cheetham, A. H., Jackson, J. B. C., & Hayek, L. A. C. (1993). Quantitative genetics of bryozoan phenotypic evolution. 1. Rate tests for random change versus selection in differentiation of living species. Evolution, 47, 1526–1538.

    Article  Google Scholar 

  • Cheetham, A. H., Jackson, J. B. C., & Hayek, L. A. C. (1994). Quantitative genetics of bryozoan phenotypic evolution. 2. Analysis of selection and random change in fossil species using reconstructed genetic-parameters. Evolution, 48, 360–375.

    Article  Google Scholar 

  • Chenoweth, S. F., Rundle, H. D., & Blows, M. W. (2010). The contribution of selection and genetic constraints to phenotypic divergence. The American Naturalist, 175, 186–196.

    Article  PubMed  Google Scholar 

  • Cheverud, J. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.

    Article  Google Scholar 

  • Coltman, D. W., O’Donoghue, P., Hogg, J. T., & Festa-Bianchet, M. (2005). Selection and genetic (CO) variance in bighorn sheep. Evolution, 59, 1372–1382.

    PubMed  Google Scholar 

  • Coltman, D. W., Pilkington, J., Kruuk, L. E. B., Wilson, K., & Pemberton, J. M. (2001). Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution, 55, 2116–2125.

    PubMed  CAS  Google Scholar 

  • Conner, J. K., Franks, R., & Stewart, C. (2003). Expression of additive genetic variances and covariances for wild radish floral traits: Comparison between field and greenhouse environments. Evolution, 57, 487–495.

    PubMed  Google Scholar 

  • Conner, J., & Via, S. (1993). Patterns of phenotypic and genetic correlations among morphological and life-history traits in wild radish, Raphanus raphanistrum. Evolution, 47, 704–711.

    Article  Google Scholar 

  • Cotter, S. C., Kruuk, L. E. B., & Wilson, K. (2004). Costs of resistance: genetic correlations and potential trade-offs in an insect immune system. Journal of Evolutionary Biology, 17, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Czesak, M. E., & Fox, C. W. (2003a). Evolutionary ecology of egg size and number in a seed beetle: Genetic trade-off differs between environments. Evolution, 57, 1121–1132.

    PubMed  Google Scholar 

  • Czesak, M. E., & Fox, C. W. (2003b). Genetic variation in male effects on female reproduction and the genetic covariance between the sexes. Evolution, 57, 1359–1366.

    PubMed  Google Scholar 

  • de Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Ancel Meyers, L., Bagheri-Chaichian, H., Blanchard, J., et al. (2003). Evolution and detection of genetic robustness. Evolution, 57, 1959–1972.

    Article  PubMed  Google Scholar 

  • De Winter, A. J. (1992). The gentic basis and evolution of acoustic mate recognition in a Ribautodelphax planthopper (homoptera, Delphacidae) 1. The female call. Journal of Evolutionary Biology, 5, 249–265.

    Article  Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. The American Naturalist, 169, 227–244.

    Article  PubMed  Google Scholar 

  • Evanno, G., Castella, E., & Coudet, J. (2006). Evolutionary aspects of population structure for molecular and quantitative traits in the freshwater snail Radix balthica. Journal of Evolutionary Biology, 19, 1071–1072.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. S., & Marshall, M. (1996). Developmental instability in Brassica compestris (Cruciferae): Fluctuating asymmetry of foliar and floral traits. Journal of Evolutionary Biology, 9, 717–736.

    Article  Google Scholar 

  • Evans, M. R., Roberts, M. L., Buchanan, K. L., & Goldsmith, A. R. (2006). Heritabilty of corticosterone response and changes in life history traits during selection in the zebra finch. Journal of Evolutionary Biology, 19, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). UK: Longman.

    Google Scholar 

  • Feldman, M. W., & Lewontin, R. C. (1975). The heritability hang-up. Science, 190, 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Fenster, C. B., & Carr, D. E. (1997). Genetics of sex allocation in mimulus (Scrophulariaceae). Journal of Evolutionary Biology, 10, 641–661.

    Article  Google Scholar 

  • Fernandez, J., Rodriguez-Ramilo, S. T., Perez-Figueroa, A., Lopez-Fanjul, C., & Caballero, A. (2003). Lack of nonadditive genetic effects on early fecundity in Drosophila melanogaster. Evolution, 57, 558–565.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1951). Limits to intensive production in animals. British Agriculture Bulletin, 4, 217–218.

    Google Scholar 

  • Fox, C. W. (1993). A quantitative genetic-analysis of oviposition preference and larval performance on 2 hosts in the bruchid beetle, Callosobruchus maculatus. Evolution, 47, 166–175.

    Article  Google Scholar 

  • Fox, C. W., Czesak, M. E., Mousseau, T. A., & Roff, D. A. (1999). The evolutionary genetics of an adaptive maternal effect: Egg size plasticity in a seed beetle. Evolution, 53, 552–560.

    Article  Google Scholar 

  • Friberg, U., Lew, T. A., Byrne, P. G., & Rice, W. R. (2005). Assessing the potential for an ongoing arms race within and between the sexes: Selection and heritable variation. Evolution, 59, 1540–1551.

    PubMed  Google Scholar 

  • Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64, 1865–1884.

    Article  PubMed  Google Scholar 

  • Garant, D., Sheldon, B. C., & Gustafsson, L. (2004). Climatic and temporal effects on the expression of secondary sexual characters: Genetic and environmental components. Evolution, 58, 634–644.

    PubMed  Google Scholar 

  • Garcia-Gonzales, F., & Simmons, L. W. (2005). The evolution of polyandry: Intrinsic sire effects contribute to embryo viability. Journal of Evolutionary Biology, 18, 1097–1103.

    Article  Google Scholar 

  • Gardner, K. M., & Latta, R. G. (2008). Heritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbata. Journal of Evolutionary Biology, 21, 737–748.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, J. M., Abdelaziz, M., Munoz-Pajares, J., & Perfectti, F. (2009). Heritability and genetic correlation of corolla shape and size in Erysimum mediohispanicum. Evolution, 63, 1820–1831.

    Article  PubMed  Google Scholar 

  • Gomez-Mestre, I., Touchon, J. C., Caccoccio, V. L., & Warkentin, K. M. (2008). Genetic variation in pathogen-induced early hatching of toad embryos. Journal of Evolutionary Biology, 21, 791–800.

    Article  PubMed  CAS  Google Scholar 

  • Gomulkiewicz, R., & Houle, D. (2009). Demographic and genetic constraints on evolution. The American Naturalist, 174, E218–E229.

    Article  PubMed  Google Scholar 

  • Gould, S. J. (1981). The mismeasure of man. Baskerville: Pelican Books.

    Google Scholar 

  • Grabowski, M. W., Polk, J. D., & Roseman, C. C. (2011). Divergent patterns of integration and reduced constraint in the human hip and the origins of bipedalism. Evolution, 65, 1336–1356.

    Article  PubMed  Google Scholar 

  • Gray, D. A., & Cade, W. H. (1999). Quantitative genetics of sexual selection in the field cricket, Gryllus integer. Evolution, 53, 848–854.

    Article  Google Scholar 

  • Groeters, F. R., & Dingle, H. (1996). Heritability of wing length in nature for the milkweed bug, Oncopeltus fasciatus. Evolution, 50, 442–447.

    Article  Google Scholar 

  • Hallgrimsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    Article  Google Scholar 

  • Han, K. P., & Lincoln, D. E. (1994). The evolution of carbon allocation to plant secondary metabolites—a genetic-analysis of cost in Diplacus aurantiacus. Evolution, 48, 1550–1563.

    Article  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.

    Article  PubMed  Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology, Evolution and Systematics, 37, 123–157.

    Article  Google Scholar 

  • Hansen, T. F., Alvarez-Castro, J. M., Carter, A. J. R., Hermisson, J., & Wagner, G. P. (2006). Evolution of genetic architecture under directional selection. Evolution, 60, 1523–1536.

    PubMed  Google Scholar 

  • Hansen, T. F., Armbruster, W. S., Carlson, M. L., & Pélabon, C. (2003a). Evolvability and genetic constraint in Dalechampia blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology, 296B, 23–39.

    Article  Google Scholar 

  • Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes. Oxford: Oxford University press.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. F., Pélabon, C., Armbruster, W. S., & Carlson, M. L. (2003b). Evolvability and genetic constraint in Dalechampia blossoms: Components of variance and measures of evolvability. Journal of Evolutionary Biology, 16, 754–765.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., & Wagner, G. P. (2001). Modeling genetic architecture: A multilinear model of gene interaction. Theoretical Population Biology, 59, 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne, D. J. (1997). Ecological history and evolution in a novel environment: Habitat heterogeneity and insect adaptation to a new host. Evolution, 51, 153–162.

    Article  Google Scholar 

  • Hegyi, G., Torok, J., & Toth, L. (2002). Qualitative population divergence in proximate determination of a sexually selected trait in the collared flycatcher. Journal of Evolutionary Biology, 15, 710–719.

    Article  Google Scholar 

  • Hendrickx, F., Maelfait, J. P., & Lens, L. (2008). Effect of metal stress on life history divergence and quantitative genetic architecture in a wolf spider. Journal of Evolutionary Biology, 21, 183–193.

    PubMed  CAS  Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Article  Google Scholar 

  • Hereford, J., Hansen, T. F., & Houle, D. (2004). Comparing strengths of directional selection: How strong is strong? Evolution, 58, 2133–2143.

    PubMed  Google Scholar 

  • Hoffman, E. A., Mobley, K. B., & Jones, A. G. (2006). Male pregnancy and the evolution of body segmentation in seahorses and pipefishes. Evolution, 60, 404–410.

    PubMed  Google Scholar 

  • Hoffmann, A. A., & Schiffer, M. (1998). Changes in the heritability of five morphological traits under combined environmental stresses in Drosophila melanogaster. Evolution, 52, 1207–1212.

    Article  Google Scholar 

  • Horne, T. J., & Ylönen, H. (1998). Heritabilities of dominance-related traits in male bank voles (Clethrionomys glareolus). Evolution, 52, 894–899.

    Article  Google Scholar 

  • Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195–204.

    PubMed  CAS  Google Scholar 

  • Houle, D. (1998). How should we explain variation in the genetic variance of traits? Genetica, 102(103), 241–253.

    Article  PubMed  Google Scholar 

  • Houle, D. (2001). Characters as the units of evolutionary change. In G. P. Wagner (Ed.), The character concept in evolutionary biology. Massachusetts: Academic press.

    Google Scholar 

  • Houle, D., Morikawa, B., & Lynch, M. (1996). Comparing mutational variabilities. Genetics, 143, 1467–1483.

    PubMed  CAS  Google Scholar 

  • Houle, D., Pélabon, C., Wagner, G. P., & Hansen, T. F. (2011). Measurement and meaning in biology. The Quarterly Review of Biology, 86, 3–34.

    Article  PubMed  Google Scholar 

  • House, C. M., Evans, G. M. V., Smiseth, P. T., Stamper, C. E., Walling, C. A., & Moore, A. J. (2008). The evolution of repeated mating in the burying beetle, Nicrophorus vespilloides. Evolution, 62, 2004–2014.

    Article  PubMed  Google Scholar 

  • House, C. M., & Simmons, L. W. (2005). The evolution of male genitalia: patterns of genetic variation and covariation in the genital sclerites of the dung beetle Onthophagus taurus. Journal of Evolutionary Biology, 18, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, K. A. (1995). The evolutionary genetics of male life-history characters in Drosophila melanogaster. Evolution, 49, 521–537.

    Article  Google Scholar 

  • Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the Ostracode genus Poseidonamicus. Evolution, 61, 1560–1576.

    Article  PubMed  Google Scholar 

  • Ivy, T. M. (2007). Good genes, genetic compatibility and the evolution of polyandry: Use of the diallel cross to address competing hypotheses. Journal of Evolutionary Biology, 20, 479–487.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby, R., & Glauberman, N. (1995). The bell curve debate: History, documents, opinions. New York: Times Books.

    Google Scholar 

  • Jensen, H., Sæther, B. E., Ringsby, T. H., Tufto, J., Griffith, S. G., & Ellegren, H. (2003). Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). Journal of Evolutionary Biology, 16, 1296–1307.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, H., Steinsland, I., Ringsby, T. H., & Sæther, B. E. (2008). Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): The role of indirect selection within and between sexes. Evolution, 62, 1275–1293.

    Article  PubMed  Google Scholar 

  • Jia, F. Y., Greenfield, M. D., & Collins, R. D. (2000). Genetic variance of sexually selected traits in waxmoths: Maintenance by genotype × environment interaction. Evolution, 54, 953–967.

    PubMed  CAS  Google Scholar 

  • Johnson, M. T. J., Agrawal, A. A., Maron, J. L., & Salminen, J. P. (2009). Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. Journal of Evolutionary Biology, 22, 1295–1307.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, T., & Barton, N. (2005). Theoretical models of selection and mutation on quantitative traits. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1411–1425.

    Article  PubMed  CAS  Google Scholar 

  • Juenger, T., & Bergelson, J. (2000). The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: Herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution, 54, 764–777.

    PubMed  CAS  Google Scholar 

  • Kaczorowski, R. L., Juenger, T. E., & Holtsford, T. R. (2008). Heritability and correlation structure of nectar and floral morphology traits in Nicotiana alata. Evolution, 62, 1738–1750.

    Article  PubMed  Google Scholar 

  • Karoly, K., & Conner, J. K. (2000). Heritable variation in a family-diagnostic trait. Evolution, 54, 1433–1438.

    PubMed  CAS  Google Scholar 

  • Kause, A., Saloniemi, I., Haukioja, E., & Hanhimaki, S. (1999). How to become large quickly: Quantitative genetics of growth and foraging in a flush feeding lepidopteran larva. Journal of Evolutionary Biology, 12, 471–482.

    Article  Google Scholar 

  • Kause, A., Saloniemi, I., Morin, J. P., Haukioja, E., Hanhimaki, S., & Ruohomaki, K. (2001). Seasonally varying diet quality and the quantitative genetics of development time and body size in birch feeding insects. Evolution, 55, 1992–2001.

    PubMed  CAS  Google Scholar 

  • Kellermann, V. M., van Heerwaarden, B., Hoffmann, A. A., & Sgro, C. M. (2006). Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species. Evolution, 60, 1104–1108.

    Article  PubMed  Google Scholar 

  • Ketola, T., & Kotiaho, J. S. (2009). Inbreeding, energy use and condition. Journal of Evolutionary Biology, 22, 770–781.

    Article  PubMed  CAS  Google Scholar 

  • Kilpimaa, J., Van de Casteele, T., Jokinen, I., Mappes, J., & Alatalo, R. V. (2005). Genetic and environmental variation in antibody and T-cell mediated responses in the great tit. Evolution, 59, 2483–2489.

    PubMed  Google Scholar 

  • Kirkpatrick, M. (2009). Patterns of quantitative genetic variation in multiple dimensions. Genetica, 136, 271–284.

    Article  PubMed  Google Scholar 

  • Kobayashi, A., Tanaka, Y., & Shimada, M. (2003). Genetic variation of sex allocation in the parasitoid wasp Heterospilus prosopidis. Evolution, 57, 2659–2664.

    PubMed  Google Scholar 

  • Koelwijn, H. P., & Hunscheid, M. P. H. (2000). Intraspecific variation in sex allocation in hermaphroditic Plantago coronopus (L.). Journal of Evolutionary Biology, 13, 302–315.

    Article  Google Scholar 

  • Kontiainen, P., Brommer, J. E., Karell, P., & Petiainen, H. (2008). Heritability, plasticity and canalization of Ural owl egg size in a cyclic environment. Journal of Evolutionary Biology, 21, 88–96.

    PubMed  CAS  Google Scholar 

  • Kruuk, L. E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F., & Clutton-Brock, T. (2002). Antler size in red deer: Heritability and selection but no evolution. Evolution, 56, 1683–1695.

    PubMed  CAS  Google Scholar 

  • Kruuk, L. E. B., Slate, J., Pemberton, J. M., & Clutton-Brock, T. H. (2003). Fluctuating asymmetry in a secondary sexual trait: no associations with individual fitness, environmental stress or inbreeding, and no heritability. Journal of Evolutionary Biology, 16, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.

    Article  Google Scholar 

  • Lande, R. (1977). On comparing coefficients of variation. Systematic Zoology, 26, 214–217.

    Article  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Larsson, K. (1993). Inheritance of body size in the Barnacle Goose under different environmental conditions. Journal of Evolutionary Biology, 6, 195–208.

    Article  Google Scholar 

  • Lauteri, M., Pliura, A., Monteverdi, M. C., Brugnoli, E., Villani, F., & Eriksson, G. (2004). Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. Journal of Evolutionary Biology, 17, 1286–1296.

    Article  PubMed  CAS  Google Scholar 

  • Layzer, D. (1974). Heritability analysis of IQ scores: Science or numerology? Science, 183, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Le Galliard, J. F., Massot, M., Landys, M. M., Meylan, S., & Clobert, J. (2006). Ontogenetic sources of variation is sexual size dimorphism in a viviparous lizard. Journal of Evolutionary Biology, 19, 690–704.

    Article  PubMed  Google Scholar 

  • Leamy, L. (1999). Heritability of directional and fluctuating asymmetry for mandibular characters in random-bred mice. Journal of Evolutionary Biology, 12, 146–155.

    Article  Google Scholar 

  • Lew, T. A., Morrow, E. H., & Rice, W. R. (2006). Standing genetic variance for female resistance to harm from males and its relationship to intralocus sexual conflict. Evolution, 60, 97–105.

    PubMed  Google Scholar 

  • Linder, J. E., & Rice, W. R. (2005). Natural selection and genetic variation for female resistance to harm from males. Journal of Evolutionary Biology, 18, 568–575.

    Article  PubMed  CAS  Google Scholar 

  • Long, T. A. F., Miller, P. M., Stewart, A. D., & Rice, W. R. (2009). Estimating heritability of female lifetime fecundity in a locally a adapted Drosophila melanogaster population. Journal of Evolutionary Biology, 22, 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., Pfrender, M., Spitze, K., Lehman, N., Hicks, J., Allen, D., et al. (1999). The quantitative and molecular genetic architecture of a subdivided species. Evolution, 53, 100–110.

    Article  Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative characters. Massachusetts: Sinauer.

    Google Scholar 

  • MacColl, A. D. C., & Hatchwell, B. J. (2003). Heritability of parental effort in a passerine bird. Evolution, 57, 2191–2195.

    PubMed  Google Scholar 

  • Magalhaes, S., Fayard, J., Janssen, A., Carbonell, D., & Olivieiri, I. (2007). Adaptation in a spider mite population after long-term evolution on a single host plant. Journal of Evolutionary Biology, 20, 2016–2027.

    Article  PubMed  CAS  Google Scholar 

  • Manier, M. K., Seyler, C. M., & Arnold, S. A. (2007). Adaptive divergence within and between ecotypes of the terrestrial garter snake, Thamnophis elegans, assessed with Fst—Qst comparisons. Journal of Evolutionary Biology, 20, 1705–1719.

    Article  PubMed  CAS  Google Scholar 

  • Mappes, T., & Koskela, E. (2004). Genetic basis of the trade-off between offspring number and quality in the bank vole. Evolution, 58, 645–650.

    PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142.

    PubMed  Google Scholar 

  • Marroig, G., Shirai, L. T., Porto, A., de Oliveria, F. B., & De Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36, 136–148.

    Article  Google Scholar 

  • Mazer, S. J., Delesalle, V. A., & Neal, P. R. (1999). Responses of floral traits to selection on primary sexual investment in Spergularia marina: The battle between the sexes. Evolution, 53, 717–731.

    Article  Google Scholar 

  • McAdam, A. G., & Boutin, S. (2003). Effects of food abundance on genetic and maternal variation in the growth rate of juvenile red squirrels. Journal of Evolutionary Biology, 16, 1249–1256.

    Article  PubMed  CAS  Google Scholar 

  • McGuigan, K., & Blows, M. W. (2010). Evolvability of individual traits in a multivariate context: Patitioning the additive genetic variance into common and specific components. Evolution, 64, 1899–1911.

    PubMed  CAS  Google Scholar 

  • McGuigan, K., Chenoweth, S. F., & Blows, M. W. (2005). Phenotypic divergence along lines of genetic variance. The American Naturalist, 165, 32–43.

    Article  PubMed  Google Scholar 

  • Meffert, L. M., Hicks, S. K., & Regan, J. L. (2002). Nonadditive genetic effects in animal behavior. The American Naturalist, 160, S198–S213.

    Article  PubMed  Google Scholar 

  • Merilä, J. (1997). Expression of genetic variation in body size of the collared flycatcher under different environmental conditions. Evolution, 51, 526–536.

    Article  Google Scholar 

  • Merilä, J., & Gustafsson, L. (1993). Inheritance of size and shape in a natural population of collared flycatchers, Ficedula albicollis. Journal of Evolutionary Biology, 6, 375–395.

    Article  Google Scholar 

  • Merilä, J., & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: Empirical patterns and development of ideas. Heredity, 83, 103–109.

    Article  PubMed  Google Scholar 

  • Merilä, J., Sheldon, B. C., & Ellegren, H. (1998). Quantitative genetics of sexual size dimorphism in the collared flycatcher, Ficedula albicollis. Evolution, 52, 870–876.

    Article  Google Scholar 

  • Messina, F. J., & Fry, J. D. (2003). Environment-dependent reversal of a life history trade-off in the seed beetle Callosobruchus maculatus. Journal of Evolutionary Biology, 16, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B. L. W., & Sinervo, B. (2007). Heritable body size mediates apparent life-history trade-offs in a simultaneous hermaphrodite. Journal of Evolutionary Biology, 20, 1554–1562.

    Article  PubMed  CAS  Google Scholar 

  • Milner, J. M., Pemberton, J. M., Brotherstone, S., & Albon, S. D. (2000). Estimating variance components and heritabilities in the wild: A case study using the “animal model” approach. Journal of Evolutionary Biology, 13, 804–813.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56, 818–836.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63, 727–737.

    Article  PubMed  Google Scholar 

  • Morrow, E. H., Leijon, A., & Meerupati, A. (2008). Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster. Journal of Evolutionary Biology, 21, 1692–1702.

    Article  PubMed  CAS  Google Scholar 

  • Mousseau, T. A., & Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, 59, 181–197.

    Article  PubMed  Google Scholar 

  • Nespolo, R. F., Bacigalupe, L. D., & Bozinovic, F. (2003). Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution, 57, 1679–1688.

    PubMed  Google Scholar 

  • Nespolo, R. F., Bustamante, D. M., Bacigalupe, L. D., & Bozinovic, F. (2005). Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini. Evolution, 59, 1829–1837.

    PubMed  CAS  Google Scholar 

  • Nilsson, J. Å., Åkesson, M., & Nilsson, J. F. (2009). Heritability of resting metabolic rate in a wild population of blue tits. Journal of Evolutionary Biology, 22, 1867–1874.

    Article  PubMed  Google Scholar 

  • Noach, E. J. K., de Jong, G., & Scharloo, W. (1996). Phenotypic plasticity in morphological traits in two populations of Drosophila melanogaster. Journal of Evolutionary Biology, 9, 831–844.

    Article  Google Scholar 

  • ONeil, P. (1997). Natural selection on genetically correlated phenological characters in Lythrum salicaria L (Lythraceae). Evolution, 51, 267–274.

    Article  Google Scholar 

  • Ostrowski, M. F., Jarne, P., & David, P. (2002). A phallus for free? Quantitative genetics of sexual trade-offs in the snail Bulinus truncatus. Journal of Evolutionary Biology, 16, 7–16.

    Article  Google Scholar 

  • Palmer, A. R. (2000). Quasireplication and the contract of error: Lessons from sex ratios, heritabilities and fluctuating asymmetry. Annual Review of Ecology and Systematics, 31, 441–480.

    Article  Google Scholar 

  • Parker, T. H., & Garant, D. (2004). Quantitative genetics of sexually dimorphic traits and capture of genetic variance by a sexually-selected condition-dependent ornament in red junglefowl (Gallus gallus). Journal of Evolutionary Biology, 17, 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.

    Article  Google Scholar 

  • Pélabon, C., Hansen, T. F., Carlson, M. L., & Armbruster, W. S. (2004). Variational and genetic properties of developmental stability in Dalechampia scandens. Evolution, 58, 504–514.

    PubMed  Google Scholar 

  • Pelletier, F., Reale, D., Garant, D., Coltman, D. W., & Festa-Bianchet, M. (2007). Selection on heritable seasonal phenotypic plasticity of body mass. Evolution, 61, 1969–1979.

    Article  PubMed  Google Scholar 

  • Perez, A., & Garcia, C. (2002). Evolutionary responses of Drosophila melanogaster to selection at different larval densities: Changes in genetic variation, specialization and phenotypic plasticity. Journal of Evolutionary Biology, 15, 524–536.

    Article  Google Scholar 

  • Perry, G. M. L., Audet, C., Laplatte, B., & Bernatchez, L. (2004). Shifting patterns in genetic control at the embryo-alevin boundary in brook charr. Evolution, 58, 2002–2012.

    PubMed  Google Scholar 

  • Pettay, J. E., Charmantier, A., Wilson, A. J., & Lummaa, V. (2008). Age-specific genetic and maternal effects in fecundity of preindustrial Finnish women. Evolution, 62, 2297–2304.

    Article  PubMed  Google Scholar 

  • Platenkamp, G. A. J., & Shaw, R. G. (1992). Environmental and genetic constraints on adaptive population differentiation in Anthoxanthum odoratum. Evolution, 46, 341–352.

    Article  Google Scholar 

  • Platenkamp, G. A. J., & Shaw, R. G. (1993). Environmental and genetic maternal effects on seed characters in Nemophila menziesii. Evolution, 47, 540–555.

    Article  Google Scholar 

  • Podolsky, R. H., Shaw, R. G., & Shaw, F. H. (1997). Population structure of morphological traits in Clarkia dudleyana. II. Constancy of within-population genetic variance. Evolution, 51, 1785–1796.

    Article  Google Scholar 

  • Polak, M., & Starmer, W. T. (2001). The quantitative genetics of fluctuating asymmetry. Evolution, 55, 498–511.

    Article  PubMed  CAS  Google Scholar 

  • Polly, D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35, 83–96.

    Article  Google Scholar 

  • Price, T., & Schluter, D. (1991). On the heritability of life-history traits. Evolution, 45, 853–861.

    Article  Google Scholar 

  • Radwan, J. (1998). Heritability of sperm competition success in the bulb mite, Rhizoglyphus robini. Journal of Evolutionary Biology, 11, 321–327.

    Google Scholar 

  • Rauter, C. M., & Moore, A. J. (2002). Evolutionary importance of parental care performance, food resources, and indirect genetic effects in a burying beetle. Journal of Evolutionary Biology, 15, 407–417.

    Article  Google Scholar 

  • Reale, D., Berteaux, D., McAdam, A. G., & Boutin, S. (2003). Lifetime selection on heritable life-history traits in a natural population of red squirrels. Evolution, 57, 2416–2423.

    PubMed  CAS  Google Scholar 

  • Reale, D., & Festa-Bianchet, M. (2000). Mass-dependent reproductive strategies in wild bighorn ewes: A quantitative genetic approach. Journal of Evolutionary Biology, 13, 679–688.

    Article  Google Scholar 

  • Ritland, K., & Ritland, C. (1996). Inferences about quantitative inheritance based on natural population structure in the yellow monkey flower, Mimulus guttatus. Evolution, 50, 1074–1082.

    Article  Google Scholar 

  • Rodriguez, R. L., & Greenfield, M. D. (2003). Genetic variance and phenotypic plasticity in a component of female mate choice in an ultrasonic moth. Evolution, 57, 1304–1313.

    PubMed  Google Scholar 

  • Roff, D. A. (1995). Antagonistic and reinforcing pleiotropy: A study of differences in development time in wing dimorphic insects. Journal of Evolutionary Biology, 8, 405–419.

    Article  Google Scholar 

  • Roff, D. A., & Mousseau, T. A. (1987). Quantitative genetics and fitness: Lessons from Drosophila. Heredity, 58, 103–118.

    Article  PubMed  Google Scholar 

  • Rolff, J., Armitage, S. A. O., & Coltman, D. W. (2005). Genetic constraints and sexual dimorphism in immune defense. Evolution, 59, 1844–1850.

    PubMed  Google Scholar 

  • Rønning, B., Jensen, H., Moe, B., & Bech, C. (2007). Basal metabolic rate: Heritability and genetic correlations with morphological traits in the zebra finch. Journal of Evolutionary Biology, 20, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  • Routley, M. B., & Husband, B. C. (2005). Responses to selection on male-phase duration in Chamerion angustifolium. Journal of Evolutionary Biology, 18, 1050–1059.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, J. J., & Siva-Jothy, M. T. (2001). Quantitative genetics of immune function and body size in the house cricket, Acheta domesticus. Journal of Evolutionary Biology, 14, 646–653.

    Article  Google Scholar 

  • Sakai, A. K., Weller, S. G., Culley, T. M., Campbell, D. R., Dunbar-Wallis, A. K., & Andres, A. (2008). Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant, Schiedea salicaria. Journal of Evolutionary Biology, 21, 18–29.

    PubMed  CAS  Google Scholar 

  • Santos, M. (1996). Apparent directional selection of body size in Drosophila buzzatii: Larval crowding and male mating success. Evolution, 50, 2530–2535.

    Article  Google Scholar 

  • Santos, M. (2001). Fluctuating asymmetry is nongenetically related to mating success in Drosophila buzzatii. Evolution, 55, 2248–2256.

    PubMed  CAS  Google Scholar 

  • Santos, M. (2002). Genetics of wing size asymmetry in Drosophila buzzatii. Journal of Evolutionary Biology, 15, 720–734.

    Article  Google Scholar 

  • Santos, M., Ruiz, A., Quezada-Diaz, J. E., Barbadilla, A., & Fontdevila, A. (1992). The evolutionary history of Drosophila buzzatii. XX. Positive phenotypic covariance between field adult fitness components and body size. Journal of Evolutionary Biology, 5, 403–422.

    Article  Google Scholar 

  • Sarkissian, T. S., & Harder, L. D. (2001). Direct and indirect responses to selection on pollen size in Brassica rapa L. Journal of Evolutionary Biology, 14, 456–468.

    Article  Google Scholar 

  • Schlichting, C. D., & Murren, C. J. (2004). Evolvability and the raw materials for adaptation. In Q. C. B. Cronk, J. Whitton, R. H. Ree, & I. E. P. Taylor (Eds.), Plant adaptation: Molecular genetics and ecology. Ottawa: NRC Research press.

    Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford university press.

    Google Scholar 

  • Sgro, C. M., & Hoffmann, A. A. (1998). Effects of temperature extremes on genetic variances for life history traits in Drosophila melanogaster as determined from parent-offspring comparisons. Journal of Evolutionary Biology, 11, 1–20.

    Article  Google Scholar 

  • Shaw, R. G., & Platenkamp, G. A. J. (1993). Quantitative genetics of response to competitors in Nemophila menziesii—a greenhouse study. Evolution, 47, 801–812.

    Article  Google Scholar 

  • Shaw, F. H., Shaw, R. G., Wilkinson, G. S., & Turelli, M. (1995). Changes in genetic variances and covariances, G whiz! Evolution, 49, 1260–1267.

    Article  Google Scholar 

  • Sherrard, M. E., Maherali, H., & Latta, R. G. (2009). Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata. Evolution, 63, 702–715.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, L. W. (2003). The evolution of polyandry: patterns of genotypic variation in female mating frequency, male fertilization success and a test of the sexy-sperm hypothesis. Journal of Evolutionary Biology, 16, 624–634.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, L. W., & Garcia-Gonzalez, F. (2007). Female crickets trade offspring viability for fecundity. Journal of Evolutionary Biology, 20, 1617–1623.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, L. W., & Kotiaho, J. S. (2002). Evolution of ejaculates: Patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Evolution, 56, 1622–1631.

    PubMed  Google Scholar 

  • Simons, A. M., Carriere, Y., & Roff, D. A. (1998). The quantitative genetics of growth in a field cricket. Journal of Evolutionary Biology, 11, 721–733.

    Article  Google Scholar 

  • Simons, A. M., & Johnston, M. O. (2006). Environmental and genetic sources of diversification in the timing of seed germination: Implications for the evolution of bet hedging. Evolution, 60, 2280–2292.

    PubMed  Google Scholar 

  • Simons, A. M., & Roff, D. A. (1994). The effect of environmental variability on the heritabilities of traits of a field cricket. Evolution, 48, 1637–1649.

    Article  Google Scholar 

  • Steigenga, M. J., Zwaan, B. J., Brakefield, P. M., & Fischer, K. (2005). The evolutionary genetics of egg size plasticity in a butterfly. Journal of Evolutionary Biology, 18, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe, J. R. (2005). Measuring natural selection on proportional traits: Comparisons of three types of selection estimates for resistance and susceptibility to herbivore damage. Evolutionary Ecology, 19, 363–373.

    Article  Google Scholar 

  • Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J., & Blows, M. W. (2008). Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing? Evolution, 62, 2435–2440.

    Article  PubMed  Google Scholar 

  • Stirling, D. G., Reale, D., & Roff, D. A. (2002). Selection, structure and the heritability of behaviour. Journal of Evolutionary Biology, 15, 277–289.

    Article  Google Scholar 

  • Teplitsky, C., Mills, J. A., Yarrall, J. W., & Merila, J. (2009). Heritability of fitness components in a wild bird population. Evolution, 63, 716–726.

    Article  PubMed  Google Scholar 

  • Theriault, V., Garant, D., Bernatchez, L., & Dodson, J. J. (2007). Heritability of life-history tactics and genetic correlation with body size in a natural population of brook charr (Salvelinus fontinalis). Journal of Evolutionary Biology, 20, 2266–2277.

    Article  PubMed  CAS  Google Scholar 

  • Thessing, A., & Ekman, J. (1994). Selection on the genetical and environmental components of tarsal growth in juvenile willow tits (Parus montanus). Journal of Evolutionary Biology, 7, 713–726.

    Article  Google Scholar 

  • Thiede, D. A. (1998). Maternal inheritance and its effect on adaptive evolution: A quantitative genetic analysis of maternal effects in a natural plant population. Evolution, 52, 998–1015.

    Article  Google Scholar 

  • Thomas, M. L., & Simmons, L. W. (2008). Cuticular hydrocarbons are heritable in the cricket Teleogryllus oceanicus. Journal of Evolutionary Biology, 21, 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Tonsor, S. J., & Goodnight, C. J. (1997). Evolutionary predictability in natural populations: Do mating system and nonadditive genetic variance interact to affect heritabilities in Plantago lanceolata? Evolution, 51, 1773–1784.

    Article  Google Scholar 

  • Tucic, B., & Stojkovic, B. (2001). Shade avoidance syndrome in Picea moorika seedlings: A growth-room experiment. Journal of Evolutionary Biology, 14, 444–455.

    Article  Google Scholar 

  • Turelli, M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theoretical Population Biology, 25, 138–193.

    Article  PubMed  CAS  Google Scholar 

  • Van Kleunen, M., & Ritland, K. (2004). Predicting evolution of floral traits associated with mating system in a natural plant population. Journal of Evolutionary Biology, 17, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  • Van Tienderen, P. M. (2000). Elasticities and the link between demographic and evolutionary dynamics. Ecology, 81, 666–679.

    Article  Google Scholar 

  • Verhoeven, K. J. F., Biere, A., Nevo, E., & Van Damme, J. M. M. (2004). Differential selection of growth rate-related traits in wild barley, Hordeum spontaneum, in contrasting greenhouse nutrient environments. Journal of Evolutionary Biology, 17, 184–196.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1989). Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics, 122, 223–234.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., Booth, G., & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution, 51, 329–347.

    Article  Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, B., & Blows, M. W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annual Review of Ecology, Evolution and Systematics, 40, 41–59.

    Article  Google Scholar 

  • Watkins, T. B. (2001). A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution, 55, 1668–1677.

    PubMed  CAS  Google Scholar 

  • Wayne, M. L., Hackett, J. B., & Mackay, T. F. C. (1997). Quantitative genetics of ovariole number in Drosophila melanogaster. 1. Segregating variation and fitness. Evolution, 51, 1156–1163.

    Article  Google Scholar 

  • Weber, S. L., & Scheiner, S. M. (1992). The genetics of phenotypic plasticity. IV. Chromosomal localization. Journal of Evolutionary Biology, 5, 109–120.

    Article  Google Scholar 

  • Weller, S. G., Sakai, A. K., Culley, T. M., Campbell, D. R., & Dunbar-Wallis, A. K. (2006). Predicting the pathway to wind pollination: heritabilities and genetic correlations of inflorescence traits associated with wind pollination in Schiedea salciaria (Caryophllaceae). Journal of Evolutionary Biology, 19, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Willi, Y., van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution and Systematics, 37, 433–458.

    Article  Google Scholar 

  • Wilson, A. J. (2008). Why h2 does not always equal VA/VP ? Journal of Evolutionary Biology, 21, 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. J., Coltman, D. W., Pemberton, J. M., Overall, A. D. J., Byrne, K. A., & Kruuk, L. E. B. (2005). Maternal genetic effects set the potential for evolution in a free-living vertebrate population. Journal of Evolutionary Biology, 18, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. J., Hutchings, J. A., & Ferguson, M. M. (2003). Selective and genetic constraints on the evolution of body size in a stream-dwelling salmonid fish. Journal of Evolutionary Biology, 16, 584–594.

    Article  PubMed  CAS  Google Scholar 

  • Windig, J. J. (1994). Reaction norms and the genetic basis of phenotypic plasticity in the wing patern of the butterfly Bicyclus anynana. Journal of Evolutionary Biology, 7, 665–695.

    Article  Google Scholar 

  • Winn, A. A. (2004). Natural selection, evolvability and bias due to environmental covariance in the field in an annual plant. Journal of Evolutionary Biology, 17, 1073–1083.

    Article  PubMed  CAS  Google Scholar 

  • Woods, R. E., Hercus, M. J., & Hoffmann, A. A. (1998). Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution, 52, 816–824.

    Article  Google Scholar 

  • Worley, A. C., & Barrett, S. C. H. (2000). Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlation between flower size and number. Journal of Evolutionary Biology, 14, 469–481.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the many participants in the measurement-theory discussion group at the University of Oslo during 2008 and 2009 for discussions of the topic of this paper. DH was supported in this research by a visiting professorship at CEES and TFH by grant #177857 from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Hansen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11692_2011_9127_MOESM1_ESM.xls

Supplementary File S1: Excel sheet with data used in this study: The data are organized by study and species. We give a short description of the trait, which should allow identification in the original study. We give classification of the trait and its scale type as described in the main text. We classify the organisms involved into some very general categories. The column “measure” indicates the type of estimate of additive genetic variance that was used. Finally, we indicate if any traits from the study were not used with the same coded reason as explained in the supplementary file S2. We report estimates with three decimal digits and at least two significant digits, but this should not be taken as an indication of the true number of significant digits, which was often impossible to discern. The column "Ie" gives the mean-scaled residual variance computed as explained in the main text, and should not be mistaken for residual or environmental variance reported in the original study. (XLS 345 kb)

11692_2011_9127_MOESM2_ESM.doc

Supplementary file S2: List of studies of quantitative genetic variation published in Evolution and Journal of Evolutionary Biology from 1992-2009 that are not included in our database (S1). For each paper we indicate the reason we could not include it. This is divided into five categories: 1. MBS: Missing basic statistics. This means that we could not find sufficient basic statistics necessary to compute evolvabilities or heritabilities, or that some necessary numbers were given with only a single significant digit (but we did include variance and heritability estimates given as “0”). 2. IS: Incompatible scales: Information to compute heritability and evolvability were given, but not on the same scale (e.g. heritabilities were reported for log-transformed traits). 3. NST: Not suitable scale type: Traits were on a scale type that did not allow mean or variance standardization (e.g. interval scales on which means are not meaningful). 4. IIM: Incomplete or inconsistent methods: This includes cases where we could not find sufficient information to be sure what the reported numbers represented (e.g. the scale of reported numbers was unclear), or cases where there were inconsistencies in the reported method or results (e.g. alternative ways of computing the same statistics gave different results and we could not locate the error). 5. DG: Different groups: The necessary statistics were not given for the same groups of individuals (e.g. we did not compute evolvabilities based on trait means calculated for a different population than the one in which the additive variance was estimated).

The papers we considered were found based on reading titles and abstracts of every original research paper published in the two journals in the given period, and then further checking those that gave some indication of being a quantitative genetics study. Due to the large number of papers we needed to check, we could not spend a long time to resolve apparent problems and inconsistencies. We excluded many studies and traits were we had doubts as to exactly what had been done or reported, and have excluded some data that might have been included after more careful considerations or consultation with authors. We apologize for such omissions. Also, the exclusion of data does not imply that there was anything wrong with the study, as the studies we consulted often had different goals that did not necessitate the types of statistics and information that we required. We hope that this list can be of use for other surveys of quantitative genetic information. (DOC 66 kb)

11692_2011_9127_MOESM3_ESM.pdf

Supplementary Figure 1: Plot of heritability against evolvability for narrow-sense estimates only (excluding negative estimates). The correlation is 0.09 ± 0.02 for positive values. (PDF 350 kb)

11692_2011_9127_MOESM4_ESM.pdf

Supplementary Figure 2: Plot of heritability against “evolvability” for full-sib estimates only (excluding negative estimates). The correlation is 0.23 ± 0.05 for positive values. (PDF 175 kb)

11692_2011_9127_MOESM5_ESM.pdf

Supplementary Figure 3: Plot of heritability against “evolvability” for broad-sense estimates only (excluding negative estimates). The correlation is 0.14 ± 0.07 for positive values. (PDF 206 kb)

11692_2011_9127_MOESM6_ESM.pdf

Supplementary Figure 4: Plot of narrow-sense heritability against evolvability for linear size traits (excluding negative estimates). The correlation is 0.01 ± 0.05 for positive values. (PDF 230 kb)

Appendix

Appendix

List of papers used in the literature review: Agrawal et al. (2002), Arnold and Phillips (1999), Ashman (2003), Asteles et al. (2006), Bacigalupe et al. (2004), Beraldi et al. (2007), Berwaerts et al. (2008), Birkhead et al. (2006), Boake and Konigsberg (1998), Brandt and Greenfield (2004), Brodie (1993), Bryant and Meffert (1995), Cadee (2000), Campbell (1996, 1997), Caruso (2004), Caruso et al. (2005), Charmantier et al. (2004a, b), Cheetham et al. (1993, 1994), Cheverud (1996), Coltman et al. (2001, 2005), Conner and Via (1993), Conner et al. (2003, Cotter et al. 2004), Czesak and Fox (2003a, b), De Winter (1992), Evanno et al. (2006), Evans and Marshall (1996), Evans et al. (2006), Fenster and Carr (1997), Fernandez et al. (2003), Fox (1993), Fox et al. (1999), Friberg et al. (2005), Garant et al. (2004), Garcia-Gonzales and Simmons (2005), Gardner and Latta (2008), Gomez et al. (2009), Gomez-Mestre et al. (2008), Gray and Cade (1999), Groeters and Dingle (1996), Han and Lincoln (1994), Hansen et al. (2003b), Hawthorne (1997), Hegyi et al. (2002), Hendrickx et al. (2008), Hoffman et al. (2006), Hoffmann and Schiffer (1998), Horne and Ylönen (1998), House and Simmons (2005), House et al. (2008), Hughes (1995), Ivy (2007), Jensen et al. (2003, 2008), Jia et al. (2000), Johnson et al. (2009), Juenger and Bergelson (2000), Kaczorowski et al. (2008), Karoly and Conner (2000), Kause et al. (1999, 2001), Kellermann et al. (2006), Ketola and Kotiaho (2009), Kilpimaa et al. (2005), Kobayashi et al. (2003), Koelwijn and Hunscheid (2000), Kontiainen et al. (2008), Kruuk et al. (2002, 2003), Larsson (1993), Lauteri et al. (2004), Le Galliard et al. (2006), Leamy (1999), Lew et al. (2006), Linder and Rice (2005), Long et al. (2009), Lynch et al. (1999), MacColl and Hatchwell (2003), Magalhaes et al. (2007), Manier et al. (2007), Mappes and Koskela (2004), Mazer et al. (1999), McAdam and Boutin (2003), Merilä (1997), Merilä and Gustafsson (1993), Merilä et al. (1998), Messina and Fry (2003), Miller and Sinervo (2007), Milner et al. (2000), Morrow et al. (2008), Nespolo et al. (2003, 2005), Nilsson et al. (2009), Noach et al. (1996), ONeil (1997), Ostrowski et al. (2002), Parker and Garant (2004), Pélabon et al. (2004), Pelletier et al. (2007), Perez and Garcia (2002), Perry et al. (2004), Pettay et al. (2008), Platenkamp and Shaw (1992), Platenkamp and Shaw (1993), Podolsky et al. (1997), Polak and Starmer (2001), Radwan (1998), Rauter and Moore (2002), Reale and Festa-Bianchet (2000), Reale et al. (2003), Ritland and Ritland (1996), Rodriguez and Greenfield (2003), Roff (1995), Rolff et al. (2005), Rønning et al. (2007), Routley and Husband (2005), Ryder and Siva-Jothy (2001), Sakai et al. (2008), Santos (1996, 2001, 2002), Santos et al. (1992), Sarkissian and Harder (2001), Sgro and Hoffmann (1998), Shaw and Platenkamp (1993), Shaw et al. (1995), Sherrard et al. (2009), Simmons (2003), Simmons and Garcia-Gonzalez (2007), Simmons and Kotiaho (2002), Simons and Johnston (2006), Simons and Roff (1994), Simons et al. (1998), Steigenga et al. (2005), Teplitsky et al. (2009), Theriault et al. (2007), Thessing and Ekman (1994), Thiede (1998), Thomas and Simmons (2008), Tonsor and Goodnight (1997), Tucic and Stojkovic (2001), Van Kleunen and Ritland (2004), Verhoeven et al. (2004), Watkins (2001), Wayne et al. (1997), Weber and Scheiner (1992), Weller et al. (2006), Wilson et al. (2003), Wilson et al. (2005), Windig (1994), Winn (2004), Woods et al. (1998), Worley and Barrett (2000).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T.F., Pélabon, C. & Houle, D. Heritability is not Evolvability. Evol Biol 38, 258–277 (2011). https://doi.org/10.1007/s11692-011-9127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9127-6

Keywords

Navigation