Skip to main content
Log in

Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oudin A, Courtois M, Rideau M, Clastre M. The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 2007; 6(2–3): 259–276

    Article  CAS  Google Scholar 

  2. Facchini PJ, De Luca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 2008; 54(4): 763–784

    Article  PubMed  CAS  Google Scholar 

  3. El-Sayed M, Verpoorte R. Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 2007; 6(2–3): 277–305

    Article  CAS  Google Scholar 

  4. van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 2004; 11(5): 607–628

    Article  Google Scholar 

  5. van Tellingen O, Sips JH, Beijnen JH, Bult A, Nooijen WJ. Pharmacology, bio-analysis and pharmacokinetics of the vinca alkaloids and semi-synthetic derivatives. Anticancer Res 1992; 12 (5): 1699–1715

    PubMed  Google Scholar 

  6. Zhao L, Sander GW, Shanks JV. Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 2013; 134: 23–54

    PubMed  Google Scholar 

  7. Contin A, van der Heijden R, Lefeber AW, Verpoorte R. The iridoid glucoside secologanin is derived from the novel triose phosphate/ pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 1998; 434(3): 413–416

    Article  PubMed  CAS  Google Scholar 

  8. Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N. Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 2005; 168(4): 1097–1107

    Article  CAS  Google Scholar 

  9. Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chénieux JC, Rideau M, Clastre M. 1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 2000; 38(7): 559–566

    Article  CAS  Google Scholar 

  10. Cunningham FX Jr, Lafond TP, Gantt E. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J Bacteriol 2000; 182(20): 5841–5848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Newman JD, Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 1999; 34(2): 95–106

    Article  PubMed  CAS  Google Scholar 

  12. Lange BM, Croteau R. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc Natl Acad Sci USA 1999; 96(24): 13714–13719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Van der Heijden R, Verpoorte R, Duine J. Biosynthesis of 3Shydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus: acetoacetyl-CoA thiolase and HMG-CoA synthase show similar chromatographic behaviour. Plant Physiol Biochem 1994; 32(6): 807–812

    CAS  Google Scholar 

  14. Maldonado-Mendoza IE, Burnett RJ, Nessler CL. Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus. Plant Physiol 1992; 100(3): 1613–1614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Schulte AE, van der Heijden R, Verpoorte R. Purification and characterization of mevalonate kinase from suspension-cultured cells of Catharanthus roseus (L.) G. Don. Arch Biochem Biophys 2000; 378(2): 287–298

    Article  PubMed  CAS  Google Scholar 

  16. Schulte AE, Llamas Durán EM, van der Heijden R, Verpoorte R. Mevalonate kinase activity in Catharanthus roseus plants and suspension cultured cells. Plant Sci 2000; 150(1): 59–69

    Article  CAS  Google Scholar 

  17. Schulte AE, van der Heijden R, Verpoorte R. Purification and characterization of phosphomevalonate kinase from Catharanthus roseus. Phytochemistry 1999; 52(6): 975–983

    Article  CAS  Google Scholar 

  18. Ramos-Valdivia AC, van der Heijden R, Verpoorte R. Isopentenyl diphosphate isomerase and prenyltransferase activities in rubiaceous and apocynaceous cultures. Phytochemistry 1998; 48(6): 961–969

    Article  CAS  Google Scholar 

  19. Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 2011; 234(5): 903–914

    Article  PubMed  CAS  Google Scholar 

  20. Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C, Papon N, Clastre M, St-Pierre B, Rodríguez-Concepción M, Burlat V, Courdavault V. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol Biol 2012; 79 (4-5): 443–459

    Article  PubMed  CAS  Google Scholar 

  21. Han M, Heppel SC, Su T, Bogs J, Zu Y, An Z, Rausch T. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus. PLoS ONE 2013; 8(5): e62467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M, Clastre M. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression 2000; 1517(1): 159–163

    Article  CAS  Google Scholar 

  23. Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc’h N, St-Pierre B, Courtois M, Oudin A. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Mol Biol Rep 2012; 39(5): 5433–5447

    Article  PubMed  CAS  Google Scholar 

  24. Meijer AH, Lopes Cardoso MI, Voskuilen JT, de Waal A, Verpoorte R, Hoge JHC. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 mono-oxygenases in plants. Plant J 1993; 4(1): 47–60

    Article  PubMed  CAS  Google Scholar 

  25. Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc’h N, Fischer MJ, Memelink J, Clastre M. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 2013; 85: 36–43

    Article  PubMed  CAS  Google Scholar 

  26. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001; 508(2): 215–220

    Article  PubMed  CAS  Google Scholar 

  27. Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012; 492(7427): 138–142

    Article  PubMed  CAS  Google Scholar 

  28. Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 2014; 101: 23–31

    Article  PubMed  CAS  Google Scholar 

  29. Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 2013; 25(10): 4123–4134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Salim V, Yu F, Altarejos J, De Luca V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 2013; 76(5): 754–765

    Article  PubMed  CAS  Google Scholar 

  31. Murata J, Roepke J, Gordon H, De Luca V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 2008; 20(3): 524–542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Vetter HP, Mangold U, Schröder G, Marner FJ, Werck-Reichhart D, Schröder J. Molecular analysis and heterologous expression of an inducible cytochrome P-450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol 1992; 100(2): 998–1007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 2000; 24(6): 797–804

    Article  PubMed  CAS  Google Scholar 

  34. De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 1989; 86 (8): 2582–2586

    Article  PubMed  PubMed Central  Google Scholar 

  35. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 1990; 18(16): 4939–4939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Geerlings A, Ibañez MML, Memelink J, van Der Heijden R, Verpoorte R. Molecular cloning and analysis of strictosidine β-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 2000; 275(5): 3051–3056

    Article  PubMed  CAS  Google Scholar 

  37. Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 2011; 168(6): 549–557

    Article  PubMed  CAS  Google Scholar 

  38. Levac D, Murata J, Kim WS, De Luca V. Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J 2008; 53(2): 225–236

    Article  PubMed  CAS  Google Scholar 

  39. St-Pierre B, Laflamme P, Alarco AM, De Luca V. The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 1998; 14(6): 703–713

    Article  PubMed  CAS  Google Scholar 

  40. Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barceló AR, Sottomayor M. Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 2008; 146(2): 403–417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Yamamoto H, Katano N, Ooi A, Inoue K. Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry 2000; 53(1): 7–12

    Article  PubMed  CAS  Google Scholar 

  42. Li J, Last RL. The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 1996; 110(1): 51–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Noé W, Mollenschott C, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 1984; 3(5): 281–288

    Article  PubMed  Google Scholar 

  44. Pasquali G, Goddijn OJ, de Waal A, Verpoorte R, Schilperoort RA, Hoge JHC, Memelink J. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 1992; 18(6): 1121–1131

    Article  PubMed  CAS  Google Scholar 

  45. Menke FL, Champion A, Kijne JW, Memelink J. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 1999; 18(16): 4455–4463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 2013; 163(4): 1792–1803

    Article  PubMed  CAS  Google Scholar 

  47. Schröder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schröder J. Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 1999; 458(2): 97–102

    Article  PubMed  Google Scholar 

  48. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 2013; 13(1): 155

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 2011; 157(4): 2081–2093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003; 21(7): 796–802

    Article  PubMed  CAS  Google Scholar 

  51. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006; 440(7086): 940–943

    Article  PubMed  CAS  Google Scholar 

  52. Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 2008; 8(1): 83

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 2009; 4(2): e4489

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496(7446): 528–532

    Article  PubMed  CAS  Google Scholar 

  55. Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep 2012; 29(6): 683–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Jiang M, Stephanopoulos G, Pfeifer BA. Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 2012; 94(4): 841–849

    Article  PubMed  CAS  Google Scholar 

  57. Dai Z, Liu Y, Huang L, Zhang X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2012; 109(11): 2845–2853

    Article  PubMed  CAS  Google Scholar 

  58. Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 2012; 134(6): 3234–3241

    Article  PubMed  CAS  Google Scholar 

  59. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA 2013; 110(29): 12108–12113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Sun or Shilin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zeng, X., Sun, C. et al. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus . Front. Med. 8, 285–293 (2014). https://doi.org/10.1007/s11684-014-0350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-014-0350-2

Keywords

Navigation