Skip to main content
Log in

Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

A Correction to this article was published on 07 January 2021

This article has been updated

Abstract

The European MOTTLES project set-up a new-generation network for ozone (O3) monitoring in 17 plots in France, Italy and Romania. These monitoring stations allowed: (1) estimating the accumulated exposure AOT40 and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1 per leaf area); and (2) collecting data of forest-response indicators, i.e. crown defoliation and visible foliar O3-like injury over the time period 2017–2019. The soil water content was the most important parameter affecting crown defoliation and was a key factor affecting the severity of visible foliar O3-like injury on the dominant tree species in a plot. The soil water content is thus an essential parameter in the PODY estimation, particularly for water-limited environments. An assessment based on stomatal flux-based standard and on real plant symptoms is more appropriated than the exposure-based method for protecting vegetation. From flux-effect relationships, we derived flux-based critical levels (CLef) for forest protection against visible foliar O3-like injury. We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species and conifers, respectively. Before using PODY as legislative standard in Europe, we recommend using the CLec for ≥ 25% of crown defoliation in a plot: 17,000 and 19,000 nmol mol−1 h AOT40 for conifers and broadleaved species, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 07 January 2021

    In the Original publication of the article, the authors found an error in the text “We recommend CLef of 5 and 12 mmol m<Superscript>−2</Superscript> POD1 for broadleaved species and conifers, respectively” under the section abstract and conclusion

References

  • Agathokleous E, Kitao M, Kinose Y (2018) A review study on ozone phytotoxicity metrics for setting critical levels in Asia. Asian J Atmos Environ 12:1–16

    Article  CAS  Google Scholar 

  • Anav A, De Marco A, Proietti C, Alessandri A, Dell’Aquila A, Cionni I et al (2016) Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Glob Change Biol 22:1608–1627

    Article  Google Scholar 

  • Anav A, Proietti C, Menut L, Carnicelli S, De Marco A, Paoletti E (2018) Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone. Atmos Chem Phys 18:5747–5763

    Article  CAS  Google Scholar 

  • Anav A, De Marco A, Friedlingstein P, Savi F, Sicard P, Sitch S et al (2019) Growing season extension affects ozone uptake by European forests. Sci Total Environ 669:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A et al (2019) Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. Sci Total Environ 658:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Braun S, Schindler C, Rihm B (2014) Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst. Environ Pollut 192:129–138

    Article  CAS  PubMed  Google Scholar 

  • Braun S, Schindler C, Rihm B (2017) Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Sci Total Environ 599–600:637–646

    Article  PubMed  CAS  Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Büker P, Feng Z, Uddling J, Briolat A, Alonso R, Braun S et al (2015) New flux based dose–response relationships for ozone for European forest tree species. Environ Pollut 206:163–174

    Article  PubMed  CAS  Google Scholar 

  • Cailleret M, Ferretti M, Gessler A, Rigling A, Schaub M (2018) Ozone effects on European forest growth-towards an integrative approach. J Ecol 106:1377–1389

    Article  CAS  Google Scholar 

  • Calatayud V, Cerveró J (2007) Foliar, physiologial and growth responses of four maple species exposed to ozone. Water Air Soil Pollut 185:239–254

    Article  CAS  Google Scholar 

  • Calatayud V, Cerveró J, Calvo E, García-Breijo FJ, Reig-Armiñana J, Sanz MJ (2011) Responses of evergreen and deciduous Quercus species to enhanced levels. Environ Pollut 159:55–63

    Article  CAS  PubMed  Google Scholar 

  • CLRTAP, UNECE Convention on Long-range Transboundary Air Pollution (2017) Mapping critical levels for vegetation”. Chapter III of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Accessed on 1st May 2020 www.icpmapping.org.lrtap

  • Dalstein L, Vas N, Tagliaferro F, Ferrara AM, Spaziani F (2005) Effets de l’ozone sur la forêt et la végétation dans les Alpes franco-italiennes. Forêt méditerranéenne 26:149–156

    Google Scholar 

  • De Marco A, Sicard P (2019) Why do we still need to derive ozone critical levels for vegetation protection? Opinion paper - IJESNR 21 - October 2019

  • De Marco A, Sicard P, Vitale M, Carriero G, Renou C, Paoletti E (2015) Metrics of ozone risks assessment for Southern European forests: canopy moisture content as a potential plant response indicator. Atmos Environ 120:182–190

    Article  CAS  Google Scholar 

  • De Marco A, Sicard P, Fares S, Tuovinen JP, Anav A, Paoletti E (2016) Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmos Environ 147:88–97

    Article  CAS  Google Scholar 

  • De Marco A, Proietti C, Anav A, Ciancarella L, D’Elia I, Fares S et al (2019) Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: insights from Italy. Environ Int 125:320–333

    Article  PubMed  CAS  Google Scholar 

  • Eichhorn J, Roskams P, Potočić N, Timmermann V, Ferretti M, Mues V et al (2016) Part IV: Visual Assessment of Crown Condition and Damaging Agents. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, p 49

  • Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  PubMed  Google Scholar 

  • European Council Directive 2008/50/EC of the European Parliament and of the council of 21st May 2008 on ambient air quality and cleaner air for Europe. Official Journal L, 152 (2008), pp 1–44

  • Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E et al (2013) Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Chang Biol 19:2427–2443

    Article  PubMed  Google Scholar 

  • Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H et al (2019) Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int 131:104966

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Lorenz M (2011) Forest Condition in Europe, 2011. Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1. ICP Forests, Hamburg, p 212

    Google Scholar 

  • Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Liu Y et al (2017) Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob Change Biol 24:2159–2168

    Article  Google Scholar 

  • González-Fernández I, Bermejo V, Elvira S, de la Torre D, González A, Navarrete L et al (2013) Modelling ozone stomatal flux of wheat under Mediterranean conditions. Atmos Environ 67:149–160

    Article  CAS  Google Scholar 

  • Grulke NE (2003) The physiological basis of ozone injury assessment attributes in Sierran conifers. Dev Environ Sci 2:55–81

    Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488

    Article  PubMed  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Kitao M, Häberle KH, Grams TEE, Koike T et al (2015) Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure. Environ Pollut 196:527–533

    Article  CAS  PubMed  Google Scholar 

  • Hoshika Y, Fares S, Savi F, Gruening C, Goded I, De Marco A et al (2017) Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric For Meteorol 234:212–221

    Article  Google Scholar 

  • Hoshika Y, Carrari E, Zhang L, Carriero G, Pignatelli S, Fasano G, Materassi A, Paoletti E (2018) Testing a ratio of photosynthesis to O3 uptake as an index for assessing O3–induced foliar visible injury in poplar trees. Environ Sci Pollut Res 25:8113–8124

    Article  CAS  Google Scholar 

  • Karlsson PE, Örlander G, Langvall O, Uddling J, Hjorth U, Wiklander K et al (2006) Negative impact of ozone on the stem basal area increment of Norway spruce in south Sweden. For Ecol Manag 232:146–151

    Article  Google Scholar 

  • Karlsson PE, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS et al (2007) Risk assessments for forest trees: the performance of the ozone flux versus the AOT40 concepts. Environ Pollut 146:608–616

    Article  CAS  PubMed  Google Scholar 

  • Lefohn A, Malley C, Smith L, Wells B, Hazucha M, Simon H et al (2018) Tropospheric ozone assessment report: global ozone metrics for climate change, human health, and crop/ecosystem research. Elem Sci Anth 6:28

    Article  Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanz M, Schaub M et al (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  PubMed  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E et al (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068

    Article  CAS  Google Scholar 

  • Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG et al (2018) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth 6:47

    Article  Google Scholar 

  • Moura BB, Alves ES, Marabesi MA, Ribeiro de Souza S, Schaub M, Vollenweider P (2018) Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. Sci Total Environ 610–611:912–925

    Article  PubMed  CAS  Google Scholar 

  • Musselman RC, Lefohn A, Massman WJ, Heath R (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888

    Article  CAS  Google Scholar 

  • National Emission Ceilings Directive (2016) Directive 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. In: EC Official Journal of the European Union L. 344 of 17.12.2016

  • Ochoa-Hueso R, Munzi S, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V et al (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions. Environ Pollut 227:194–206

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2009) Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves in seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631–1643

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S et al (2019) Toward stomatal-flux based forest protection against ozone: the MOTTLES approach. Sci Total Environ 691:516–527

    Article  CAS  PubMed  Google Scholar 

  • Proietti C, Anav A, De Marco A, Sicard P, Vitale M (2016) A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Sci Total Environ 556:1–11

    Article  CAS  PubMed  Google Scholar 

  • Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G et al. (2010) Monitoring of Ozone Injury. Manual Part X, 22 pp. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme, Hamburg. ISBN: 978-3-926301-03-1

  • Schaub M, Calatayud V, Ferretti M, Brunialti G, Lövblad G, Krause G et al. (2016) Part VIII: monitoring of ozone injury. In: UNECE ICP Forests Programme Coordinating Centre (ed) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 14 pp

  • Sicard P, Dalstein-Richier L (2015) Health and vitality assessment of two common pine species in the context of climate change in Southern Europe. Environ Res 137:235–245

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Sicard P, Serra R, Rossello P (2016a) Spatio-temporal trends of surface ozone concentrations and metrics in France. Environ Res 149:122–144

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, Augustaitis A, Belyazid S, Calfapietra C, De Marco A, Fenn M et al (2016b) Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ Pollut 213:977–987

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Paoletti E (2016c) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ 541:729–741

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, Anav A, De Marco A, Paoletti E (2017) Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios. Atmos Chem Phys 17:12177–12196

    Article  CAS  Google Scholar 

  • Sicard P, Paoletti E Agathokleous E, Araminienė V, Proietti C, Coulibaly F et al. (2020) Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ Res (in press)

  • UNECE, United Nations Economic Commission for Europe (2010) Mapping critical levels for vegetation. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends, United Nations Economic Commission for Europe (UNECE) Convention on Long range Transboundary Air Pollution, Geneva, 254 pp

  • Vitale M, Proietti C, Cionni I, Fischer R, De Marco A (2014) Random forests analysis: a useful tool for defining the relative importance of environmental conditions on crown defoliation. Water Air Soil Pollut 225:1992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the contribution of the LIFE financial instrument of the European Union in the framework of the MOTTLES project “Monitoring ozone injury for setting new critical levels” (LIFE15 ENV/IT/000183) and the technical support by: Ecrins National Park, Morvan Regional Natural Park, Electricity of France, certified Associations of Air Quality Monitoring (Atmosf’air Bourgogne, Atmo Grand-Est, Atmo Auvergne-Rhône-Alpes, Atmo Nouvelle-Aquitaine), the MERA Programme, funded by the French Ministry for Ecological and Solidary Transition, Comando Unità Forestali, Abientali e Agroalimentari Carabinieri (CUFA) and all the Institutions managing the Italian and Romanian sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sicard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the LIFE financial instrument of the European Union in the framework of the MOTTLES project “Monitoring ozone injury for setting new critical levels” (LIFE15 ENV/IT/000183).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sicard, P., De Marco, A., Carrari, E. et al. Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests. J. For. Res. 31, 1509–1519 (2020). https://doi.org/10.1007/s11676-020-01191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01191-x

Keywords

Navigation