Skip to main content
Log in

Testing a ratio of photosynthesis to O3 uptake as an index for assessing O3-induced foliar visible injury in poplar trees

  • Ozone and plant life: the Italian state-of-the-art
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Visible foliar injury by ozone (ozone visible injury) is known as a biomarker to assess potential phytotoxicity of ozone. We investigated ozone visible injury in an ozone-sensitive poplar (Oxford clone) under a 2-year free-air controlled exposure (FACE) experiment and calculated three ozone indices (i.e., accumulative ozone exposure over 40 ppb during daylight hours (AOT40), phytotoxic ozone dose above a flux threshold of 0 nmol m−2 s−1 (POD0), and the cumulative value of the ratio of hourly ozone uptake to net photosynthesis (ΣU/P n ) to assess the critical level (CL) at the time of the first symptom onset of ozone visible injury. We tested the hypothesis that ozone injury depends both on the amount of ozone entering a leaf and on the capacity for biochemical detoxification or repair with photosynthesis as a proxy. The CLs at the time of the first symptom onset of ozone visible injury were 19 ppm h for AOT40, 26 mmol m−2 for POD0, and 1.2 mol mol−1 for ΣU/P n in Oxford clone at the ozone FACE experiment. Our findings were then verified by 4-year observation-based data in central Italy on Oxford clone and white poplar (Populus alba L.). These observation-based data indicated that we found ozone visible injury in Oxford clone even though AOT40 was relatively low (11.7 ppm h). On the other hand, when values of POD0 and ΣU/P n exceeded over the CLs, the occurrence of initial symptoms in Oxford clone was shown. White poplar did not show ozone visible injury. ΣU/P n of white poplar at the field sites reached ~1.0 mol mol−1 (less than the CL = 1.2 mol mol−1, which was obtained from O3 FACE) during May–September, although the values of POD0 were relatively high in white poplar (44–47 mmol m−2 during May–September). The result implies that ozone injury may have occurred in poplars when stomatal ozone flux exceeded the critical range of tolerance due to the assimilate shortage for repair and defense against ozone stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso R, Elvira S, Sanz MJ, Gerosa G, Emberson LD, Bermejo B, Gimeno BS (2008) Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes. Environ Pollut 155:473–480

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research (ed. By J. Biggens), pp.221–224. Martinus-Nijhoff Publishers, Dordrecht.

  • Baumgarten M, Werner H, Häberle K-H, Emberson LD, Fabian P, Matyssek R (2000) Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environ Pollut 109:431–442

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol 159:609–621

    Article  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  CAS  Google Scholar 

  • Carriero G, Emiliani G, Giovannelli A, Hoshika Y, Manning WJ, Traversi ML, Paoletti E (2015) Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU). Environ Pollut 206:575–581

    Article  CAS  Google Scholar 

  • CLRTAP (2015) Mapping critical levels for vegetation, Chapter III of Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution. http://icpmapping.org/Publications_CLRTAP. Accessed 20 March 2017

  • Desotgiu R, Pollastrini M, Cascio C, Gerosa G, Marzuoli R, Bussotti F (2013) Responses to ozone on Populus “Oxford” clone in an open top chamber experiment assessed before sunrise and in full sunlight. Photosynthetica 51:267–280

    Article  CAS  Google Scholar 

  • Fares S, Barta C, Brilli F, Centritto M, Ederli L, Ferranti F, Pasqualini S, Reale L, Tricoli D, Loreto F (2006) Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant. Physiol Plant 128:456–465

    Article  CAS  Google Scholar 

  • Fares S, Mahmood T, Liu S, Loreto F, Centritto M (2011) Influence of growth temperature and measuring temperature on isoprene emission, diffusive limitations of photosynthesis and respiration in hybrid poplars. Atmos Environ 45:155–161

    Article  CAS  Google Scholar 

  • Feng Z, Sun J, Wan W, Hu E, Catalayud V (2014) Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ Pollut 193:296–301

    Article  CAS  Google Scholar 

  • Fredericksen TS, Kolb TE, Skelly JM, Steiner KC, Joyce BJ, Savage JE (1996) Light environment alters ozone uptake per net photosynthetic rate in black cherry trees. Tree Physiol 16:485–490

    Article  CAS  Google Scholar 

  • Günthardt-Goerg MS, McQuattie CJ, Maurer S, Frey B (2000) Visible and microscopic injury in leaves of five deciduous tree species related to current critical ozone levels. Environ Pollut 109:489–500

    Article  Google Scholar 

  • Haagen-Smit AJ, Darley EF, Zaitlin M, Hull H, Noble W (1952) Investigation on injury to plants from air pollution in the Los Angeles area. Plant Physiol 27:18–34

    Article  CAS  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 159–254

    Google Scholar 

  • Hoshika Y, Paoletti E, Omasa K (2012a) Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan. Atmos Environ 55:271–278

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2012b) Modeling of stomatal ozone conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure. Water Air Soil Pollut 223:3893–3901

    Article  CAS  Google Scholar 

  • Hoshika Y, Omasa K, Paoletti E (2012c) Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness. PLoS One 7:e39270

    Article  CAS  Google Scholar 

  • Hoshika Y, Pecori F, Conese I, Bardelli T, Marchi E, Manning WJ, Badea O, Paoletti E (2013a) Effects of a three-year exposure to ambient ozone on biomass allocation in poplar using ethylenediurea. Environ Pollut 180:299–303

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada M, Koike T (2013b) Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Ann Bot-London 112:1149–1158

    Article  CAS  Google Scholar 

  • Hoshika Y, Carriero G, Zhaozhong F, Zhang Y, Paoletti E (2014) Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. Sci Total Environ 481:453–468

    Article  CAS  Google Scholar 

  • Iio A, Fukasawa H, Nose Y, Kakubari Y (2004) Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba Mountain in Japan. Trees 18:510–517

    Article  Google Scholar 

  • Innes JL, Skelly JM, Schaub M (2001) Ozone and broadleaved species. A guide to the identification of ozone-induced foliar injury, Paul Haupt Verlag Bern

    Google Scholar 

  • Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos Trans R Soc B 273:593–610

    Article  CAS  Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitation and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–393

    Article  CAS  Google Scholar 

  • Körner C (1995) Leaf diffusive conductances in the major vegetation types of the globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of Photosynthesis. Ecological Studies Vol. 100. Springer, Heidelberg, pp 463–490

    Chapter  Google Scholar 

  • Li P, Catalayud V, Gao F, Uddling J, Feng Z (2016) Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiol 36:1105–1116

    Article  CAS  Google Scholar 

  • Lombardozzi D, Sparks JP, Bonan G, Levis S (2012) Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651–659

    Article  Google Scholar 

  • Marzuoli R, Gerosa G, Desotgiu R, Bussotti F, Ballarin-Denti A (2009) Ozone fluxes and foliar injury development in the ozone-sensitive poplar clone Oxford (Populus maximowiczii x Populus berolinensis). Tree Physiol 29:67–76

    Article  CAS  Google Scholar 

  • Massman WJ (2004) Toward an ozone standard to protect vegetation based on effective dose: a review of deposition resistances and a possible metric. Atmos Environ 38:2323–2337

    Article  CAS  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  Google Scholar 

  • Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen JP, Wieser G, Paoletti E (2013) Climate change, air pollution and global challenges: understanding and perspectives from forest research. Developments in Environmental Science 13. Elsevier, Amsterdam

  • Middleton JT, Kendrick JB, Schwalm HW (1950) Smog in the south coastal area of California. Calif Agric 4(11):7–10

    Google Scholar 

  • Middleton JT, Kendrick JB, Darley EF (1953) Air pollution injury to crops. Calif Agric 7(1):11–12

    Google Scholar 

  • Middleton JT, Crafts AS, Brewer RF, Taylor OC (1956) Plant damage by air pollution. Calif Agric 10(6):9–12

    Google Scholar 

  • Moura BB, Alves ES, de Souza SR, Domingos M, Vollenweider P (2014) Ozone phytotoxic potential with regard to fragments of the Atlantic semi-deciduous forest downwind of Sao Paulo, Brazil. Environ Pollut 192:65–73

    Article  CAS  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–250

    Article  CAS  Google Scholar 

  • Musselman RC, Massman WJ (1999) Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmos Environ 33:65–73

    Article  CAS  Google Scholar 

  • Noble WM (1955) Pattern of damage produced on vegetation by smog. Agric Food Chem 3:330–332

    Article  CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Novak K, Skelly JM, Schaub M, Kräuchi N, Hug C, Landolt W, Bleuler P (2003) Ozone air pollution and foliar injury development on native plants of Switzerland. Environ Pollut 125:41–52

    Article  CAS  Google Scholar 

  • Oue H, Kobayashi K, Zhu J, Guo W, Zhu X (2011) Improvements of the ozone dose response functions for predicting the yield loss of wheat due to elevated ozone. J Agric Meteorol 67:21–32

    Article  Google Scholar 

  • Paoletti E, Grulke N (2010) Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ Pollut 158:2664–2671

    Article  CAS  Google Scholar 

  • Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Ferrara AM (2009a) Use of the antiozonant ethylenediurea (EDU) in Italy: verification of the effects of ambient ozone on crop plants and trees and investigation of EDU’s mode of action. Environ Pollut 157:1453–1460

    Article  CAS  Google Scholar 

  • Paoletti E, Ferrara AM, Calatayud V, Cervero J, Giannetti F, Sanz MJ, Manning WJ (2009b) Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example. Environ Pollut 157:865–870

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2009c) Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves in seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631–1643

    Article  CAS  Google Scholar 

  • Paoletti E, Materassi A, Fasano G, Hoshika Y, Carriero G, Silaghi D, Badea O (2017) A new-generation 3D ozone FACE (free air controlled exposure). Sci Tot Environ 575:1407–1414

    Article  CAS  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updatedworld map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:633–1644

    Article  Google Scholar 

  • Pihl Karlsson G, Sellden G, Skarby L, Pleijel H (1995) Clover as an indicator plant for phytotoxic ozone concentrations: visible injury in relation to species, leaf age and exposure dynamics. New Phytol 129(2):355–365

  • Pihl Karlsson G, Karlsson PE, Soja G, Vandermeiren K, Pleijel H (2004) Test of the short-term critical levels for acute ozone injury on plants-improvements by ozone uptake modelling and the use of an effect threshold. Atmos Environ 38:2237–2245

    Article  CAS  Google Scholar 

  • Pollastrini M, Desotgiu R, Camin F, Ziller L, Gerosa G, Marzuoli R, Bussotti F (2014) Severe drought events increase the sensitivity to ozone on poplar clones. Environ Exp Bot 100:94–104

    Article  CAS  Google Scholar 

  • Richards BL, Middleton JT, Hewitt WB (1958) Air pollution with relation to agronomic crops. V. Oxidant stipple of grape. Agron J 50:559–561

    Article  CAS  Google Scholar 

  • Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Paoletti E (2016) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Sci Total Environ 541:729–741

    Article  CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot-London 78:661–669

    Article  CAS  Google Scholar 

  • Tuovinen J-P, Simpson D, Emberson L, Ashmore M, Gerosa G (2007) Robustness of modelled ozone exposures and doses. Environ Pollut 146:578–586

    Article  CAS  Google Scholar 

  • Uddling J, Hall M, Wallin G, Karlsson PE (2005) Measuring and modelling stomatal conductance and photosynthesis in mature beech in Sweden. Agric For Meteorol 132:115–131

    Article  Google Scholar 

  • Van der Heyden D, Skelly J, Innes J, Hug C, Zhang J, Landolt W, Bleuler P (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331

    Article  Google Scholar 

  • Watanabe M, Hoshika Y, Inada N, Koike T (2014) Canopy carbon budget of Siebold’s beech (Fagus crenata) sapling under free air ozone exposure. Environ Pollut 184:682–689

    Article  CAS  Google Scholar 

  • Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Moreno Lazzara for support during the field work, the Fondazione Cassa di Risparmio di Firenze (2013/7956) and the LIFE15 ENV/IT/000183 project MOTTLES for financial support to the experiment, and the National Natural Science Foundation of China (31401895) and China Scholarship Council (201606615002) for financial support to Lu Zhang for his visiting research in Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Hoshika.

Additional information

Responsible editor: Yi-ping Chen

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshika, Y., Carrari, E., Zhang, L. et al. Testing a ratio of photosynthesis to O3 uptake as an index for assessing O3-induced foliar visible injury in poplar trees. Environ Sci Pollut Res 25, 8113–8124 (2018). https://doi.org/10.1007/s11356-017-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9475-6

Keywords

Navigation