Skip to main content
Log in

Random Forests Analysis: a Useful Tool for Defining the Relative Importance of Environmental Conditions on Crown Defoliation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Defoliation is one of the most important parameters monitored in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). Defoliation is an indicator for forest health and vitality. Conventional statistical analysis shows weak or not significant correlations between tree crown defoliation and climatic conditions or air pollution parameters, because of its high variability. The study aims to evaluate the most important factors among climatic, pollutants (Nox and NHy) and stand parameters affecting crown defoliation of the main European tree species (Fagus sylvatica, Picea abies, Quercus ilex, Pinus sylvestris and Quercus petraea) through application of a new and powerful statistical classifier, the random forests analysis (RFA). RFA highlighted that tree crown defoliation was mainly related to age in P. abies, to geographic location in F. sylvatica and to air pollution predictors in Q. ilex, while it was similarly linked to meteorological and air pollution predictors in P. sylvestris and Q. petraea. In this study, RFA has proven to be, for the first time, a useful tool to discern the most important predictors affecting tree crown defoliation, and consequently, it can be used for an appropriate forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber, J. D., & Driscoll, C. T. (1997). Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochemical Cycles, 11, 639–648.

    Article  CAS  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  • Andreu, L., Gutierrez, E., Macias, M., Ribas, M., Bosch, O., & Camarero, J. (2007). Climate increases regional tree growth variability in Iberian pine forests. Global Change Biology, 13, 804–815.

    Google Scholar 

  • Auclair, A.N.D., Worrest, R.C., Lachance, D., Martin, H.C. (1992). Climatic perturbation as a general mechanism of forest dieback. In: Manion PD, Lachance D (ed) Forest decline concepts, (pp.38-58) St. Paul, Minnesota.

  • Augustaitis, A., Augustaitiene, I., & Deltuvas, R. (2007). Crown defoliation in relation to the acid deposition and meteorology in Lithuania. Water, Air, & Soil Pollution, 182, 335–348.

    Article  CAS  Google Scholar 

  • Augustin, S., Bolte, A., Holzhausen, M., & Wolff, B. (2005). Exceedence of critical loads of nitrogen and sulphur and its relation to forest conditions. European Journal of Forest Research, 124, 289–300.

    Article  CAS  Google Scholar 

  • Bergmeier, E., & Dimopoulos, P. (2001). Fagus sylvatica forest vegetation in Greece: syntaxonomy and gradient analysis. Journal of Vegetation Science, 12, 109–126.

    Article  Google Scholar 

  • Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.

    Article  CAS  Google Scholar 

  • Brandt, J. P. (1995). Forest insect and disease caused impacts to timber resources of West-Central Canada: 1988-1992. Edmonton: Information Report NOR-X-341, Northern Forestry Center, Canadian Forest Service, Natural Resources Canada.

    Google Scholar 

  • Breashears, D. D., Cobb, N. S., Rich, P. M., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102, 15144–15148.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees (2 nd ed). Belmont: Wadsworth.

    Google Scholar 

  • Bytnerowicz, A., Godzik, S., Poth, M., Anderson, I., Szdzuj, J., et al. (1999). Chemical composition of air, soil and vegetation in forests of the Silesian Beskid Mountains, Poland. Water, Air, & Soil Pollution, 116, 141–150.

    Article  CAS  Google Scholar 

  • Carnicer, J., Coll, M., Nynyerola, X., Pons, X., Sànchez, G., & Peňuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 108, 1474–1478.

    Article  CAS  Google Scholar 

  • Churchill, J. B., John, H. H., Duncan, D. P., & Hodson, A. C. (1964). Long-term effects of defoliation of aspen by the forest tent caterpillar. Ecology, 45, 630–633.

    Article  Google Scholar 

  • Cools, N., & De Vos, B. (2011). Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests. iForest, 4(1), 205–211.

  • Cutler, D. R., & Stevens, J. (2006). Random forest for microarrays. Methods in Enzimology, 411, 422–432.

    Article  CAS  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., et al. (2007). Random forest for classification in Ecology. Ecology, 88, 2783–2792.

    Article  Google Scholar 

  • De Marco, A., Screpanti, A., Attorre, F., Proietti, C., & Vitale, M. (2013). Assessing ozone and nitrogen impact on net primary productivity with a generalised non-linear model. Environmental Pollution, 172, 250–263.

    Article  Google Scholar 

  • De Vos, B., & Cools, N. (2011). Second European Forest Soil Condition Report. Volume I: Results of the BioSoil Soil Survey. INBO. R. 2011.35. Research Institute for Nature and Forest, Brüssel.

  • de Vries, W., Klap, J., & Erisman, J. W. (2000). Effects of environmental stress on forest crown condition in Europe Part I: hypotheses and approach to the study. Water, Air, &Soil Pollution, 119, 317–333.

    Article  Google Scholar 

  • de Vries, W., Vel, E., Reinds, G. J., Deelstra, H., Klap, J. M., et al. (2003a). Intensive monitoring of forest ecosystem in Europe: 1. Objectives, set-up and evaluation strategy. Forest Ecology and Management, 174, 77–95.

    Article  Google Scholar 

  • de Vries, W., Reinds, G. J., & Vel, E. (2003b). Intensive monitoring of forest ecosystem in Europe: 2. Atmospheric deposition and its impact on soil solution chemistry. Forest Ecology and Management, 174, 97–115.

    Article  Google Scholar 

  • de Vries, W., Reinds, G. J., Gundersen, P., & Sterba, H. (2006). The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology, 12, 1151–1173.

    Article  Google Scholar 

  • de Vries, W., Dobbertin, M. H., Solberg, S., van Dobben, H. F., & Schaub, M. (2014). Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystem in Europe: an overview. Plant and Soil. doi:10.1007/s11104-014-2056-2.

    Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, B., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., et al. (2007). The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon (Ed.), Climate Change (pp. 499–587). Cambridge: Cambridge University Press.

  • Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., et al. (2006). Nitrogen and sulphur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003. doi:10.1029/2005GB002672.

    Article  Google Scholar 

  • Dierschke, H., & Bohn, U. (2004). Eutraphente Rotbuchenwälder in Europa. Tuexenia, 24, 19–56.

    Google Scholar 

  • Eichhorn, J., Roskams, P., Ferretti, M., Mues, V., Szepesi, A., Durrant, D. (2010): Visual assessment of crown condition and damaging agents. 49 pp. Manual Part IV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg. ISBN: 978-3-926301-03-1. [http://www.icp-forests.org/Manual.htm].

  • Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., et al. (2007). Global analysis of nitrogen and phosphorous limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.

    Article  Google Scholar 

  • Erisman, J. W., & De Vries, W. (2000). Nitrogen deposition and effects on European forests. Environmental Reviews, 8, 65–93.

    Article  CAS  Google Scholar 

  • Fares, S., Vargas, R., Detto, M., Goldstein, A. H., Karlik, J., Paoletti, E., et al. (2013). Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Global Change Biology, 19, 2427–2443.

    Article  Google Scholar 

  • Ferretti, M., Calderisi, M., & Bussotti, F. (2007). Ozone exposure, defoliation of beech (Fagus sylvatica L.) and visible foliar symptoms on native plants in selected plots of South-Western Europe. Environmental Pollution, 145, 644–651.

    Article  CAS  Google Scholar 

  • Fischer, R., De Vries, W., Barros, M., Van Dobben, H., Dobbertin, M., Mues, V., et al. (2002). The condition of forests in Europe, 2002 executive report. Geneva: UN/ECE.

    Google Scholar 

  • Fischer, R., De Vries, W., Beuker, E., Calatayud, V., Fürst, A., Häberle, K.-H., et al. (2003). Forest condition in Europe, executive report. Geneva: UN/ECE.

    Google Scholar 

  • Fischer, R., Lorenz, M., Granke, O., Mues, V., Iost, S., et al. (2010). Forest condition in Europe, 2010 Technical Report of ICP Forests. Work report of the institute for world forestry 2010/1. Hamburg: ICP Forests. 175 pp.

    Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. R., Bekunda, M., Cai, Z., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Gruber, N., & Galloway, J. N. (2008). An Earth system perspective of the global nitrogen cycle. Nature, 451, 293–296.

    Article  CAS  Google Scholar 

  • Gundersen, P. (2000). The role of nitrogen in forest ecosystem. In R. Fischer, W. De Vries, W. Seidling, P. Kennedy, & M. Lorenz (Eds.), Forest condition in Europe (p. 34). Geneva: Executive Report 2000. UN/ECE and EC.

    Google Scholar 

  • Gutiérrez, E. (1988). Dendroecological study of Fagus sylvatica L. in the Montseny Mountains (Spain). Acta Ecologica, 9, 301–309.

    Google Scholar 

  • Hassan, Q. K., Bourque, C. P., Meng, F. R., & Cox, R. M. (2007). A wetness index using terrain-corrected surface temperature and normalized difference vegetation index derived from standard MODIS products: an evaluation of its use in a humid forest-dominated region of eastern Canada. Sensors, 7, 2028–2048.

    Article  Google Scholar 

  • Hildahl, V., & Reeks, W. A. (1960). Outbreaks of the forest tent caterpillar, MalacosomadisstriaHbn., and their effects on stands of trembling aspen in Manitoba and Saskatchewan. The Canadian Entomologist, 92, 199–209.

    Article  Google Scholar 

  • Hüttl, R.F.J., Schneider, U., Bend, O. (2009). Long-term ecosystem research: why monitoring is so important. In: “Long-term ecosystem research: understanding the present to shape the future” (KaennelDobbertin M ed). Zurich (Switzerland), 7-11 Sept 2009.

  • Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I., & Linder, S. (2007). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121–137.

    Article  Google Scholar 

  • Ishwaran, H. (2007). Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 1, 519–537.

    Article  Google Scholar 

  • Joliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Kandler, O. (1992). The german forest decline situation: a complex disease or a complex of diseases? In: Manion PD, Lachance D (ed) Forest Decline Concepts, (pp.59-84) St. Paul, Minnesota.

  • Kandler, O. (1994). Vierzehn Jahre Waldschadensdiskussion. Naturwissenschaftiliche Rundschau, 47, 419.

    Google Scholar 

  • Klap, J., Voshaar, J. O., De Vries, W., & Erisman, J. W. (1997). Relationships between crown condition and stress factors. In E. Muller, W. De Vries, & J. W. Erisman (Eds.), Ten Years of Monitoring Forest Conditions in Europe, United Nations Economic Commission for Europe (pp. 277–307). Brussels: European Commission.

    Google Scholar 

  • Klap, J., OudeVoshaar, J. H., De Vries, W., & Erisman, J. W. (2000). Effects of environmental stress on forest crown condition in Europe Part IV: statistical analyses of relationship. Water, Air, &Soil Pollution, 119, 387–420.

    Article  CAS  Google Scholar 

  • Lamarque, J. F., Kiehl, J. T., Brasseur, G. P., Butler, T., et al. (2005). Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. Journal of Geophysical Research and Atmospheres, 110, D19303. doi:10.1029/2005JD005825.

    Article  Google Scholar 

  • Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate-induced range shifts: model differences and model reliability. Global Change Biology, 12, 1568–1584.

  • Lorenz, M. (1995). International co-operative programme on assessment and monitoring of air pollution effects on forests-ICP forests. Water, Air and Soil Pollution, 85(3), 1221–1226.

  • Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics. London: Edward Arnold.

    Google Scholar 

  • Mueller, R. C., Scudder, C., Porter, M., Trotter, R. T., III, Gehring, C., & Whitham, T. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology, 93, 1085–1093.

    Article  Google Scholar 

  • Müller-Edzards, C., De Vries, W., & Erisman, J. W. (1997). Ten years of monitoring forest condition in Europe—studies on temporal development, spatial distribution and impacts of natural and anthropogenic stress factors, technical background report. Geneva: UNECE and EC.

    Google Scholar 

  • Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjønaas, O. J., et al. (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145–148.

    Article  CAS  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, J. M., Piper, S. C., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.

    Article  CAS  Google Scholar 

  • Nilsson, J., &Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Miljoerapport, 15.

  • Nilsson, S., Andersen, B., Dickson, W., Eriksson, E., Henriksen, A., Kämeri, J., et al. (1986). Critical loads for nitrogen and sulphur. Report from a Nordic working group. Stockholm: Nordic Council of Ministers, Miljø rapport 1986, 11.

    Google Scholar 

  • Ozolincius, R., & Stakenas, V. (2001). Influence of sulphur deposition and drought stress on forest condition in Lithuania. Baltic Forestry, 7, 18–23.

    Google Scholar 

  • Ozolincius, R., Stakenas, V., & Serafinaviciute, B. (2005). Meteorological factors and air pollution in Lithuanian forests: Possible effects on tree condition. Environmental Pollution, 137, 587–595.

    Article  CAS  Google Scholar 

  • Paoletti, E., Augustaitis, A., Bytnerowicz, A., Bucher, J., Ferretti, M., Johnson, D., et al. (2003). State of science and knowledge gaps with respect to air pollution impacts on forests. Ekologia, (Bratislava), 22, 8–17.

    Google Scholar 

  • Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. PhysiologiaPlantarum, 100, 264–273.

    CAS  Google Scholar 

  • Prasad, A. M., Iverson, I. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecological predictions. Ecosystem, 9, 181–199.

    Article  Google Scholar 

  • Running, S. W., Nemani, R. R., Peterson, D. L., et al. (1989). Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulations. Ecology, 70, 1090–1101.

    Article  Google Scholar 

  • Schöpp, W., Amann, M., Cofala, J., Heyes, C., & Klimont, Z. (1999). Integrated assessment of European air pollution emission control strategies. Environmental Modelling and Software, 14(1), 1–9.

    Article  Google Scholar 

  • Seidling, W. (2001). Integrative studies on forest ecosystem conditions: multivariate evaluations on tree crown condition for two areas with distinct deposition gradients (p. 88). Geneva: United Nations Economic commission for Europe, European commission, flemish community.

    Google Scholar 

  • Seidling, W., & Mues, V. (2005). Statistical and geostatistical modelling of preliminarily adjusted defoliation on a European scale. Environmental Monitoring and Assessment Volume 101, Numbers, 1–3(2005), 233–247. doi:10.1007/s10661-005-9304-0.

    Article  Google Scholar 

  • Speight, M.R., &Wainhouse, D. (1989). Ecology and management of forest insects, Oxford.

  • Staszewski, T., Kubiesa, P., & Lukasik, W. (2012). Response of spruce stands in national parks of southern Poland to air pollution in 1998-2005. European Journal of Forest Research, 131, 1163–1173.

    Article  Google Scholar 

  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rational, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348.

    Article  Google Scholar 

  • Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and QSAR. Journal of Chemical Information and Computer Sciences, 43, 1947–1958.

    CAS  Google Scholar 

  • Thomson, M. G., & Nelleman, C. (1994). Isolation of natural factors affecting crown density and crown color in coniferous forest: Implications for monitoring of forest decline. Ambio, 23, 251.

    Google Scholar 

  • UNECE (United Nations Economic Commission for Europe) (2010). Manual on methodologies and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests part X, sampling and analysis of soil.

  • van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., et al. (2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 521–524.

    Article  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Vitale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitale, M., Proietti, C., Cionni, I. et al. Random Forests Analysis: a Useful Tool for Defining the Relative Importance of Environmental Conditions on Crown Defoliation. Water Air Soil Pollut 225, 1992 (2014). https://doi.org/10.1007/s11270-014-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1992-z

Keywords

Navigation