Skip to main content
Log in

Comparative transcriptome analysis identifies differentially expressed genes between normal and late-blooming Siberian apricot

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Blooming date is an important trait in fruit tree species. Although several quantitative trait loci confirming blooming date were identified in Prunus spp., the molecular mechanism underlying it remains unclear. Arising from this, the transcriptomes of normal blooming and late-blooming Siberian apricot (P. sibirica L.) flower buds were analyzed using RNA-seq technology. A total of 68,855 unigenes were de novo assembled, among which 1204 were differentially expressed between normal and late blooming. Gene ontology enrichment analysis revealed that biological processes were enriched with metabolic processes. The catalytic-related gene transcripts between the two types of blooming were significantly changed in the molecular function. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 156 genes were successfully annotated and 75 pathways enriched. Genes for gibberellin biosynthesis were up-regulated in normal blooming, whereas abscisic acid degradation-related genes were also up-regulated in normal blooming. Moreover, circadian rhythms related genes including EARLY FLOWERING 4, LATE ELONGATED HYPOCOTYL and CIRCANDIAN CLOCK ASSOCIATED1 were all up-regulated in normal blooming, indicating that circadian rhythms have a very important role in controlling blooming date. Furthermore, zinc finger protein CONSTANS-LIKE 12 was blasted onto the quantitative trait loci region on linkage group 4 in peach. However, changes in the abundance of key flowering genes such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, FLOWERING LOCU T, LEAFY and FLOWERING LOCUS C were not significantly different, indicating that further investigation should explore the function of these genes on blooming date. The outcomes of this study will provide a valuable platform for further research on the molecular mechanism of blooming date in Prunus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64(2):162–170

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J Cell Mol Biol 61(6):1001

    Article  CAS  Google Scholar 

  • Anderson JL, Seeley SD (1993) Bloom delay in deciduous fruits. Hortic Rev 15:97–144

    Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13(9):627–639

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T (2013) Transcriptome analysis of japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol 54(7):1132–1151

    Article  CAS  PubMed  Google Scholar 

  • Ballester J, Company RSI, Arus P, Vicente MCD (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120(3):268–270

    Article  CAS  Google Scholar 

  • Barros PM, Gonçalves N, Saibo NJM, Oliveira MM (2012) Cold acclimation and floral development in almond bud break: insights into the regulatory pathways. J Exp Bot 63(12):4585–4596

    Article  CAS  PubMed  Google Scholar 

  • Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404(6780):889–892

    Article  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1991) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119(3):721–743

    Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29(2):404–410

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca l.) in warm winter climates: an approach in murcia (Spain) and the western cape (South Africa). Eur J Agron 37(1):43–55

    Article  Google Scholar 

  • Castède S, Campoy JA, García JQ, Le DL, Lafargue M, Barreneche T (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202(2):703–715

    Article  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, Garcíagómez JM, Terol J, Talón M, Robles M (2005) Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98(1):18–31

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    Article  CAS  PubMed  Google Scholar 

  • Dogramaci M, Foley ME, Chao WS, Christoffers MJ, Anderson JV (2013) Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. Plant Mol Biol 81(6):577–593

    Article  CAS  PubMed  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, Mcwatters HG, Kozmabognár L, Nagy F (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419(6902):74–77

    Article  CAS  PubMed  Google Scholar 

  • Erez A (2000) Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. Temperate fruit crops in warm climates. Springer, Dordrecht, pp 17–48

    Book  Google Scholar 

  • Eriksson ME, Millar AJ (2003) The circadian clock. A plant’s best friend in a spinning world. Plant Physiol 132(2):732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185(4):917–930

    Article  PubMed  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by fruitfull, APETALA1 and cauliflower. Development 127(4):725–734

    CAS  PubMed  Google Scholar 

  • Gong DY, Ho CH (2002) The Siberian High and climate change over middle to high latitude Asia. Theoret Appl Climatol 72(1):1–9

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedon Y, Legave JM (2008) Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecol Model 219(1–2):189–199

    Article  Google Scholar 

  • Gumus M, Kasifoglu S (2010) Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass Bioenerg 34(1):134–139

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J Cell Mol Biol 30(4):385–394

    Article  CAS  Google Scholar 

  • Hur J, Ahn J (2015) The change of first-flowering date over South Korea projected from downscaled IPCC AR5 simulation: peach and pear. Int J Climatol 35(8):1926–1937

    Article  Google Scholar 

  • Jofuku KD, Den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothi T, Suttle JC, Chao WS, Horvath DP, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia Esula L.). BMC Genom 9(1):536

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M (2008) KEGG for linking genomes to life and the environment. Nucl Acids Res 36(Database issue):D480

    CAS  PubMed  Google Scholar 

  • Karlberg A, Englund M, Petterle A, Molnar G, Sjödin A, Bako L (2010) Analysis of global changes in gene expression during activity-dormancy cycle in hybrid aspen apex. Plant Biotechnol 27(1):1–16

    Article  CAS  Google Scholar 

  • Klie M, Debener T (2011) Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Res Notes 4(1):518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hortscience 22:271

    Google Scholar 

  • Lavee S (1973) Dormancy and bud break in warm climates; considerations of growth regulator involvement. Acta Hortic 22:371–377

    Google Scholar 

  • Li XM, Qin ZQ, Tu JF, Yang FC, Zhu HY, Liu XQ (2011) Study on chilling requirement of different pear cultivars. J Henan Agric Sci 40(7):126–129

    Google Scholar 

  • Liu G, Zhang L, Wang T, Zhao X (1996) Observation of flower bud differentiation and phenology in Siberian apricot (Prunus sibirica L.). J Shenyang Agric Univ 27(1):95–96 (in Chinese)

    Google Scholar 

  • Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55(3):411–421

    Article  PubMed  Google Scholar 

  • Mandel MA, Gustafsonbrown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Biol 52(1):139–162

    Article  CAS  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye T, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–99

    Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46(2):292–299

    Article  CAS  PubMed  Google Scholar 

  • Mornya P, Cheng F (2011) The levels of hormone and carbohydrate in autumn and non-autumn flowering tree peonies. Can J Plant Sci 91(6):991–998

    Article  CAS  Google Scholar 

  • Naor A, Flaishman M, Stern R, Moshe A, Erez A (2003) Temperature effects on dormancy completion of vegetative buds in apple. J Am Soc Hortic Sci 128(5):636–641

    Article  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okie WR, Blackburn B (2011) Increasing chilling reduces heat requirement for floral budbreak in peach. Hortscience 46(2):245–252 (A Publication of the American Society for Horticultural Science)

    Article  Google Scholar 

  • Olsen JE (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73(1–2):37–47

    Article  CAS  PubMed  Google Scholar 

  • Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing constans demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12(6):885–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139(12):2198–2209

    Article  CAS  PubMed  Google Scholar 

  • Quero-Garcia J, Ivancic A, Lebot V (2010) Taro and cocoyam. Root and tuber crops. Springer, New York, pp 149–172

    Chapter  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109(4):884–897

    Article  CAS  PubMed  Google Scholar 

  • Reinoso H, Luna V, Pharis RP, Bottini R (2002) Dormancy in peach (Prunus persica) flower buds. V. Anatomy of bud development in relation to phenological stage. Can J Bot 80(6):656–663

    Article  Google Scholar 

  • Richardson EA (1974) A model for estimating the completion of rest for ‘redhaven’ and ‘elberta’ peach trees. HortScience 9:331–332

    Google Scholar 

  • Rieu I, Ruizrivero O, Fernandezgarcia N, Griffiths J, Powers SJ, Gong F (2008) The gibberellin biosynthetic genes ATGA20ox1 and ATGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53(3):488–504

    Article  CAS  PubMed  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23(1):130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Mccarthy DJ, Smyth GK (2010) Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Driessche KV, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58(15–16):4047–4060

    Article  CAS  PubMed  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61(3):254–263

    Article  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8(2):379–389

    Article  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) Constans mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120

    Article  PubMed  Google Scholar 

  • Suttle JC (1998) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118(3):843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuenca MC (1972) Chilling requirements in almond. Spanish. Anal Estacion Exp Aula Dei 11:325–329

    Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM (2013) RNA-seq: revelation of the messengers. Trends Plant Sci 18(4):175–179

    Article  PubMed  CAS  Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    Article  CAS  Google Scholar 

  • Wang L (2012) Evaluation of Siberian Apricot (Prunus sibirica, L.) germplasm variability for biodiesel properties. J Am Oil Chem Soc 89(9):1743–1747

    Article  CAS  Google Scholar 

  • Wang LR, Zhu GR, Fang WC, Zuo QY (2003) Estimating models of the chilling requirement for peach. Acta Hortic Sin 30(4):379–383

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149(2):981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Seng S, Sui J, Vonapartis E, Luo X, Gong B (2015) Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Front Plant Sci 6(e0166):749–753

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z (2006) Wego: a web tool for plotting go annotations. Nucl Acids Res 34(Web Server issue):W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ (2005) CONSTANS activates SUPPERSSOR OF OVEREXPRESSION OF CONSTAN 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139(2):770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Ming C, Chen X, Xu Z, Shan G, Li LC (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59(15):4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhebentyayeva T, Fan S, Olukolu B, Barakat A, Leida C, Badenes ML, Bielenberg D, Reighard G, Okie W, Abbott AG (2010) From genetics to epigenetics in control of chilling requirements and flowering time in peach. In: 5th international Rosaceae genomics conference, November 2010, Stellenbosch (South Africa)

  • Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50(3):644–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Aohan Forestry Bureau, Inner Mongolia Autonomous Region and Chengde Forestry Bureau in China for their help in collecting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Pang.

Additional information

Project funding: This work was funded by the Fundamental Research Funds for the Central Universities (BLYJ201517), and the Program for New Century Excellent Talents in University by the Ministry of Education, China (NCET-10-0223).

The online version is available at http://www.springerlink.com

Corresponding editor: Hu Yanbo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Song, S., Sheng, S. et al. Comparative transcriptome analysis identifies differentially expressed genes between normal and late-blooming Siberian apricot. J. For. Res. 30, 2277–2288 (2019). https://doi.org/10.1007/s11676-018-0825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0825-0

Keywords

Navigation