Skip to main content
Log in

Light and temperature sensing and signaling in induction of bud dormancy in woody plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldwin B, Bandara MS, Tanino K (2000) Bud scale maturation in Saskatoon berry (Amelanchier alnifolia Nutt). Plantlets following in vitro hormonal treatments. Acta Horticult 520:203–208

    Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner A, Jansson S, Strauss S, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38:662–666

    CAS  PubMed  Google Scholar 

  • Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    CAS  PubMed  Google Scholar 

  • Bünning E (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: Central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    CAS  PubMed  Google Scholar 

  • Clapham D, Dormling I, Ekberg I, Eriksson G, Qamaruddin M, Vince-Prue D (1998a) Latitudinal cline of requirement for far-red light for the photoperiodic control of bud set and extension growth in Picea abies (Norway spruce). Physiol Plant 102:71–78

    CAS  Google Scholar 

  • Clapham D, Ekberg I, Dormling I, Eriksson G, Qamaruddin M, Vince-Prue D (1998b) Dormancy: night timekeeping and day timekeeping for the photoperiodic control of bud set in Norway spruce. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific Publishers, Oxford, pp 195–209

    Google Scholar 

  • Clapham D, Kolukisaoglu HÜ, Larsson CT, Qamaruddin M, Wiegmann-Eirund C, Schneider-Poetsch HAW, von Arnold S (1999) Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Mol Biol 40:669–678

    CAS  PubMed  Google Scholar 

  • Clapham D, Ekberg I, Eriksson G, Norell L, Vince-Prue D (2002) Requirement for far-red light to maintain secondary needle extension growth in northern but not southern populations of Pinus sylvestris (Scots pine). Physiol Plant 114:207–212

    CAS  PubMed  Google Scholar 

  • Conti L, Bradley D (2007) Terminal flower 1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    CAS  PubMed  Google Scholar 

  • Dole JM, Wilkins HF (2005) Floriculture. Principles and species, 2nd edn. Pearson, New Jersey

    Google Scholar 

  • Dormling I, Gustafsson Å, Wettstein D (1968) The experimental control of the life cycle in Picea abies (L.) Karst. Silvae Genet 17:44–64

    Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    CAS  PubMed  Google Scholar 

  • Eriksson ME (2000) The role of phytochrome A and gibberellins in growth under long and short day conditions. Studies in hybrid aspen. Acta Universitatis Agriculturae Sueciae, Silvestria 164. Dissertation, Swedish Agricultural University

  • Eriksson M (2007) Low levels of phytochrome A expression alters circadian rhythm and change levels of flowering locus T leading to early bud set in Populus. Comp Biochem Physiol Part A 146:S231

    Google Scholar 

  • Eriksson M, Millar J (2003) The circadian clock. A plant`s best friend in a spinning world. Plant Physiol 132:732–738

    CAS  PubMed  Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and spatial expression of a gibberellin-20-oxidase isolated from hybrid aspen (Populus tremula L × P. tremuloides Michx). Planta 214:920–930

    CAS  PubMed  Google Scholar 

  • Franklin K (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    CAS  PubMed  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    CAS  PubMed  Google Scholar 

  • Goffinet MC, Larson PR (1981) Structural changes in Populus deltoides terminal buds and in the vascular transition zone of the stems during dormancy induction. Amer J Bot 68:118

    Google Scholar 

  • Gyllenstrand N, Clapham D, Källman T, Lagercrantz U (2007) A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 144:248–257

    CAS  PubMed  Google Scholar 

  • Håbjørg A (1972) Effects of light quality, light intensity and night temperature on growth and development of three latitudinal populations of Betula pubescens. Ehrh Meld Norges landbrukshøgsk 51:1–17

    Google Scholar 

  • Halliday KJ, Whitelam GC (2003) Changes in photoperiod or temperature alters the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol 131:1913–1920

    CAS  PubMed  Google Scholar 

  • Halliday KL, Salter MG, Thingnæs E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:1–11

    Google Scholar 

  • Hansen E, Olsen JE, Junttila O (1999) Gibberellins and subapical cell divisions in relation to bud set and bud break in Salix pentandra. J Plant Growth Regul 18:167–170

    CAS  PubMed  Google Scholar 

  • Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70:359–369

    CAS  PubMed  Google Scholar 

  • Heide OM (1974) Growth and dormancy in Norway spruce ecotypes (Picea abies) I. Interaction of photoperiod and temperature. Physiol Plant 30:1–12

    Google Scholar 

  • Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol 23:931–936

    CAS  PubMed  Google Scholar 

  • Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Scientia Hort 115:309–314

    Google Scholar 

  • Heide OM, Prestrud K (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    CAS  PubMed  Google Scholar 

  • Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007) A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–741

    CAS  PubMed  Google Scholar 

  • Holefors H, Rosnes AKR, Opseth L, Fossdal CG, Olsen JE (2009) Cloning and characterisation of CONSTANS like genes affected by photoperiod in Norway spruce. Plant Physiol Biochem 47:105–115

    CAS  PubMed  Google Scholar 

  • Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178:103–122

    CAS  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley M (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 11:534–540

    Google Scholar 

  • Horvath DP, Chao WP, Suttle J, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions in leafy spurge (Euphorbia esula L.). BMC Genomics 9:536–552

    PubMed  Google Scholar 

  • Howe GT, Gardner G, Hackett WP, Furnier GR (1996) Phytochrome control of short-day-induced bud set in black cottonwood. Physiol Plant 97:95–103

    CAS  Google Scholar 

  • Howe GT, Bucciaglia PA, Furnier GR, Hackett WP, Cordonnier-Pratt MM, Gardner G (1998) Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci, but lacks members of the PHYC/F and PHYE subfamilies. Mol Biol Evol 15:160–175

    CAS  PubMed  Google Scholar 

  • Huertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Mortante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce (Picea abies (L.) Karst). Genetics 174:2095–2150

    Google Scholar 

  • Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300

    CAS  PubMed  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2006) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European Aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226

    Google Scholar 

  • Junttila O (1976) Apical growth cessation and shoot tip abscission in Salix. Physiol Plant 38:278–286

    CAS  Google Scholar 

  • Junttila O (1980) Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiol Plant 48:347–352

    Google Scholar 

  • Junttila O (2007) Regulation of annual shoot growth cycle in northern tree species. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plants under changing environment. Res Signpost, Kerala, pp 177–210

    Google Scholar 

  • Junttila O, Jensen E (1988) Gibberellins and photoperiodic control of shoot elongation in Salix. Physiol Plant 74:371–376

    CAS  Google Scholar 

  • Junttila O, Kaurin Å (1985) Climatic control of apical growth cessation in latitudinal ecotypes of Salix pentandra L. In: Kaurin Å, Junttila O, Nilsen J (eds) Plant production in the north. Norwegian University Press, Oslo, pp 83–91

    Google Scholar 

  • Junttila O, Nilsen J, Igeland B (2002) Effect of temperature in the induction of bud dormancy in various ecotypes of Betula pubescens and B. pendula. Scan J For Res 18:208–217

    Google Scholar 

  • Kalcsits L, Silim S, Tanino K (2009a) Warm temperature accelerates short-photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus × spp). Trees 23:971–979

    Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam G, Franklin K (2009) High temperature-mediated adaptations in plant architecture requires the bHLH transcription factor PIF4. Curr Biol 19:408–413

    CAS  PubMed  Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic press, New York

    Google Scholar 

  • Kvaalen H, Johnsen Ø (2008) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  • Kvifte G, Hegg K, Hansen V (1983) Spectral distribution of solar radiation in the Nordic countries. J Climate Appl Meteorol 22:143–152

    Google Scholar 

  • Kyriacou CP, Peixoto AA, Sandrelli F, Costa R, Tauber E (2007) Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genetics 24:124–132

    Google Scholar 

  • Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60:2501–2525

    CAS  PubMed  Google Scholar 

  • Lang GA (1987) Dormancy: a new universal terminology. HortScience 22:817–820

    Google Scholar 

  • Matsuo T, Okamoto K, Onai K, Niwa Y, Shimigawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22:918–930

    CAS  PubMed  Google Scholar 

  • Millington WF, Chanye WR (1973) Shedding of shoots and branches. In: Kozlowski TT (ed) Shedding of plant parts. Academic Press, New York, pp 149–204

    Google Scholar 

  • Mølmann JA, Berhanu AT, Stormo SK, Ernstsen A, Junttila O, Olsen JE (2003) The metabolism of gibberellin A19 is under photoperiodic control in Populus, Salix and Betula, but not in daylength-insensitive Populus overexpressing phytochrome A. Physiol Plant 119:278–286

    Google Scholar 

  • Mølmann JA, Asante DK, Jensen JB, Krane MN, Junttila O, Olsen JE (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action, and induce bud set and cold acclimation, but not dormancy in hybrid aspen. Plant Cell Environ 28:1579–1588

    Google Scholar 

  • Mølmann JA, Junttila O, Johnsen Ø, Olsen JE (2006) Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environ 29:166–172

    PubMed  Google Scholar 

  • Moritz T (1995) Biological activity, identification and quantification of gibberellins in seedlings of Norway spruce (Picea abies) grown under different photoperiods. Physiol Plant 95:67–72

    CAS  Google Scholar 

  • Nienstaedt H (1967) Chilling requirements in seven Picea species. Silvae Genet 16:65–68

    Google Scholar 

  • Nilsen J (1985) Light climate in northern areas. In: Junttila O, Nilsen J (eds) Plant production in the North (Kaurin Å. Tromsø, Norwegian University Press

    Google Scholar 

  • Nitsch JP (1957) Photoperiodism in woody plants. Proc Am Soc Hort Sci 70:526–544

    CAS  Google Scholar 

  • Okada R, Kondo S, Satbhai SB, Yamaguchi N, Tsukuda M, Aoki S (2009) Functional characterization of CCA1/LHY homolog genes PpCCA1a and PpCCA1b, in the moss Physcomitrella patens. Plant J. doi: 10.1111/j.1365-313X.2009.03979.x

  • Olsen JE, Jensen E, Junttila O, Moritz T (1995a) Photoperiodic control of endogenous gibberellins in seedlings of Salix pentandra. Physiol Plant 93:639–644

    CAS  Google Scholar 

  • Olsen JE, Junttila O, Moritz T (1995b) A localised decrease of GA1 in shoot tips of Salix pentandra seedlings precedes cessation of shoot elongation under short photoperiod. Physiol Plant 95:627–632

    CAS  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997a) Ectopic expression of oat phytochrome A in Hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12:1339–1350

    CAS  Google Scholar 

  • Olsen JE, Junttila O, Moritz T (1997b) Long day-induced bud break in Salix pentandra is associated with transiently elevated levels of GA1 and gradual increase in IAA. Plant Cell Physiol 38:536–540

    CAS  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith, Or E (2009) Gene expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol. doi: 10.1007/s11103-009-9531-9

  • Pauley SS, Perry TO (1954) Ecotypic variation of the photoperiodic response in Populus. J Arnold Arboretum 35:167–188

    Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    CAS  PubMed  Google Scholar 

  • Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci 102:7037–7042

    CAS  PubMed  Google Scholar 

  • Rohde A, Bhalerao R (2007) Dormancy in the perennial context. Trends in Plant Sci 12:217–223

    CAS  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in Poplar. Plant Cell 14:1885–1901

    CAS  PubMed  Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58:4047–4060

    CAS  PubMed  Google Scholar 

  • Romero JM, Valverde F (2009) Evolutionary conserved photoperiod mechanisms in plants. Plant Signaling Behaviour 4:642–644

    CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions of the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    CAS  PubMed  Google Scholar 

  • Ruonala R, Rinne PLH, Kangasjärvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreell K, Storme V, Rombauts S, Fromm J, Bhalerao R, Boerjan W, Rohde A (2007) A molecular time table for apical bud formation and dormancy induction in Poplar. Plant Cell 19:2370–2390

    CAS  PubMed  Google Scholar 

  • Sachs RM (1965) Stem elongation. Annu Rev Plant Physio l16:73–96

    Google Scholar 

  • Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F (2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19:359–368

    CAS  PubMed  Google Scholar 

  • Shimizu M, Ichikawa K, Aoki S (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem Biophys Res Comm 324:1296–1301

    CAS  PubMed  Google Scholar 

  • Kalcsits L, Silim S, Tanino K (2009b) Temperature influence on dormancy induction in woody plants. In: Gusta LV, Wisniewski M, Tanino K (eds) Plant cold hardiness from the laboratory to the field. CABI press, Wallingford, UK, pp 108–118

    Google Scholar 

  • Søgaard G, Johnsen Ø, Nilsen J, Junttila O (2008) Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Tree Physiol 28:311–320

    PubMed  Google Scholar 

  • Stavang JA, Ernsten A, Lindgård B, Lid S, Moe R, Olsen JE (2005) Thermoperiodic regulation of shoot elongation is mediated by transcriptional regulation of GA inactivation in pea. Plant Physiol 138:2344–2353

    CAS  PubMed  Google Scholar 

  • Stavang JA, Junttila O, Moe R, Olsen JE (2007) Differential temperature regulation of GA metabolism in light and darkness. J Exp Bot 58:3061–3069

    CAS  PubMed  Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Yoshida S, Asami T, Olsen JE, Garcia-Martinez JL, Alabadi D, Blazquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    CAS  PubMed  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    CAS  PubMed  Google Scholar 

  • Svendsen E, Wilen R, Liu R, Tanino KK (2007) A molecular marker associated with dormancy induction in northern and southern ecotypes of red-osier dogwood. Tree Physiol 27:385–397

    CAS  PubMed  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarfs: novel functions of gibberellins in plant development. Trends Plant Sci 10:1360–1385

    Google Scholar 

  • Sylven N (1939) Long and short day types of Swedish forest trees. Svensk Papperstidning 43:317–354

    Google Scholar 

  • Takata N, Saito S, Tanaka-Saito C, Nanjo T, Shinohara K, Uemura M (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819

    CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1995) Do long-day plants and short-day plants perceive daylength in the same way? Flowering Newslett 20:50–57

    Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, London

    Google Scholar 

  • Vaartaja O (1959) Evidence of photoperiodic ecotypes in trees. Ecol Monogr 29:91–111

    Google Scholar 

  • Vidal AM, Ben-Cheikh W, Talon M, Garcia-Martinez JL (2003) Regulation of gibberellin 20-oxidase and gibberellin content in citrus by temperature and cirtrus exocortis viroid. Planta 217:442–448

    CAS  PubMed  Google Scholar 

  • Vince Prue D (1984) Contrasting types of photoperiodic response in the control of dormancy. Plant Cell Environ 7:507–513

    Google Scholar 

  • Vince-Prue D, Clapham DH, Ekberg I, Norell L (2001) Circadian timekeeping for the photoperiodic control of budset in Picea abies (Norway spruce) seedlings. Biol Rhytm Res 32:479–487

    Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278

    PubMed  Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    CAS  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211

    CAS  PubMed  Google Scholar 

  • Westergaard L, Eriksen EN (1997) Autumn temperature affects the induction of dormancy in first-year seedlings of Acer platanoides L. Scand J For Res 12:11–16

    Google Scholar 

  • Worrall J, Mergen F (1967) Environmental and genetic control of dormancy in Picea abies. Physiol Plant 20:733–745

    Google Scholar 

  • Zobell O, Coupland G, Reiss B (2005) The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol 7:266–275

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Norwegian Research Council (grant 191455) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorunn E. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, J.E. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73, 37–47 (2010). https://doi.org/10.1007/s11103-010-9620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9620-9

Keywords

Navigation