Skip to main content
Log in

Atomistic Simulation of Grain Boundaries in Niobium: Structure, Energy, Point Defects and Grain-Boundary Self-Diffusion

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The < 110 > symmetric tilt grain boundaries in niobium have been studied by computer simulation methods. The structure and energies of the considered boundaries and the energies of vacancy formation in them have been calculated by the method of molecular-static simulation. Dependences of vacancy formation energies on various factors have been analyzed. The stability of boundaries at elevated temperatures has been studied by the method of molecular dynamics, and the coefficients of grain-boundary self-diffusion have been calculated for three most stable tilt boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, and X. Zhu, Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances, Mater. Res. Lett., 2022, 10(4), p 163-256.

    Article  Google Scholar 

  2. V.V. Popov, E.N. Popova, and A.V. Stolbovskiy, Nanostructuring Nb by Various Techniques of Severe Plastic Deformation, Mater. Sci. Eng. A, 2012, 539, p 22-29.

    Article  Google Scholar 

  3. V.V. Popov, and E.N. Popova, Behavior of Nb and CuNb Composites Under Severe Plastic Deformation and Annealing, Mater. Trans., 2019, 60, p 1209-1220.

    Article  Google Scholar 

  4. L. Deng, X. Yang, K. Han, Y. Lu, M. Liang, and Q. Liu, Microstructure and Texture Evolution of Cu-Nb Composite Wires, Mater. Charact., 2013, 81, p 124-133.

    Article  Google Scholar 

  5. E.N. Popova, I.L. Deryagina, E.G. Valova-Zaharevskaya, M.L. Ruello, and V.V. Popov Jr., Microstructural Features in Multicore Cu-Nb Composites, Materials, 2021, 14, p 7033-7045.

    Article  ADS  Google Scholar 

  6. A.P. Sutton, and R.W. Balluffi, Interfaces in Crystalline Materials Clarendon Press, Oxford, 1995, p 819

    Google Scholar 

  7. G.S. Rohrer, Grain Boundary Energy Anisotropy: A Review, J. Mater. Sci., 2011, 46, p 5881-5895.

    Article  ADS  Google Scholar 

  8. Y. Mishin, M. Asta, and J. Li, Atomistic Modeling of Interfaces and Their Impact on Microstructure and Properties, Acta Mater., 2010, 58, p 1117-1151.

    Article  ADS  Google Scholar 

  9. S.J. Fensin, S.M. Valone, E.K. Cerreta, J.P. Escobedo-Diaz, G.T. Gray, K. Kang, and J. Wang, Effect of Grain Boundary Structure on Plastic Deformation During Shock Compression Using Molecular Dynamics, Model. Simul. Mater. Sci. Eng., 2013, 21, p 015011.

    Article  ADS  Google Scholar 

  10. M.J. Mills, M.S. Daw, G.J. Thomas, and F. Cosandey, High-Resolution Transmission Electron Microscopy of Grain Boundaries in Aluminum and Correlation with Atomistic Calculations, Ultramicroscopy, 1992, 40(3), p 247-257.

    Article  Google Scholar 

  11. J.D. Rittner, and D.N. Seidman, <110> Symmetric Tilt Grain-Boundary Structures in Fcc Metals with Low Stacking-Fault Energies, Phys. Rev. B: Condens. Matter. Mater. Phys., 1996, 54(10), p 6999-7015.

    Article  ADS  Google Scholar 

  12. M.A. Tschopp, and D.L. McDowell, Structures and Energies of Σ3 Asymmetric Tilt Grain Boundaries in Copper and Aluminium, Phil. Mag., 2007, 87(22), p 3147-3173.

    Article  ADS  Google Scholar 

  13. D.L. Olmsted, S.M. Foiles, and E.A. Holm, Survey of Computed Grain Boundary Properties in Face-Centered Cubic Metals: I. Grain Boundary Energy, Acta Mater., 2009, 57, p 3694-3703.

    Article  ADS  Google Scholar 

  14. D.L. Olmsted, E.A. Holm, and S.M. Foiles, Survey of Computed Grain Boundary Properties in Face-Centered Cubic Metals: II. Grain Boundary Mobility, Acta Mater., 2009, 57, p 3704-3713.

    Article  ADS  Google Scholar 

  15. T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin, Structural Phase Transformations in Metallic Grain Boundaries, Nat. Commun., 2013, 4, p 1-7.

    Article  Google Scholar 

  16. L. Zhang, C. Lu, and K. Tieu, A Review on Atomistic Simulation of Grain Boundary Behaviors in Face-Centered Cubic Metals, Comput. Mater. Sci., 2016, 118, p 180-191.

    Article  Google Scholar 

  17. L. Zhang, C. Lu, L. Pei, X. Zhao, J. Zhang, and K. Tieu, Evaluation of Mechanical Properties of Σ5(210)/[001] Tilt Grain Boundary with Self-Interstitial Atoms by Molecular Dynamics Simulation, J. Nanomater., 2017, 2017, p 1-11.

    ADS  Google Scholar 

  18. Z.-H. Liu, Y.-X. Feng, and J.-X. Shang, Characterizing Twist Grain Boundaries in BCC Nb by Molecular Simulation: Structure and Shear Deformation, Appl. Surf. Sci., 2016, 370, p 19-24.

    Article  ADS  Google Scholar 

  19. D. Singh, and A. Parashar, Effect of Symmetric and Asymmetric Tilt Grain Boundaries on the Tensile Behaviour of Bcc-Niobium, Comput. Mater. Sci., 2018, 143, p 126-132.

    Article  Google Scholar 

  20. D. Singh, P. Sharma, and A. Parashar, Atomistic Simulations to Study Point Defect Dynamics in Bi-Crystalline Niobium, Mater. Chem. Phys., 2020, 255, p 1-10.

    Article  Google Scholar 

  21. D. Singh, and A. Parashar, A Comparison Between Σ3 Asymmetrical Tilt Grain Boundary Energies in Niobium Obtained Analytically and Through Molecular Dynamics Based Simulations, Mater. Sci. Forum., 2020, 997, p 179-184.

    Article  Google Scholar 

  22. A.G. Lipnitskii, I.V. Nelasov, E.V. Golosov, Yu.R. Kolobov, and D.N. Maradudin, A Molecular-Dynamics Simulation of Grain-Boundary Diffusion of Niobium and Experimental Investigation of its Recrystallization in a Niobium-Copper System, Russ. Phys. J., 2013, 56(3), p 330-337.

    Article  Google Scholar 

  23. S. Plimton, Fast Parallel Algorithms for Short Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1-19.

    Article  ADS  Google Scholar 

  24. M.E. Stupak, M.G. Urazaliev, and V.V. Popov, Structure and Energy of 〈110〉 Symmetric Tilt Boundaries in Polycrystalline Tungsten, Phys. Met. Metallogr., 2020, 121(8), p 797-803.

    Article  ADS  Google Scholar 

  25. P. Hirel, Atomsk: A Tool for Manipulating and Converting Atomic Data Files, Comput. Phys. Commun., 2015, 197, p 212-219.

    Article  ADS  Google Scholar 

  26. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.

    Article  ADS  Google Scholar 

  27. S. Starikov, and D. Smirnova, Optimized Interatomic Potential for Atomistic Simulation of Zr-Nb Alloy, Comput. Mater. Sci., 2021, 197, p 110581.

    Article  Google Scholar 

  28. C. Yang, and L. Qi, Modified Embedded-Atom Method Potential of Niobium for Studies on Mechanical Properties, Comput. Mater. Sci., 2019, 161, p 351-363.

    Article  Google Scholar 

  29. M.R. Fellinger, H. Park, and J.W. Wilkins, Force-Matched Embedded-Atom Method Potential for Niobium, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 81, p 144119.

    Article  ADS  Google Scholar 

  30. H.-K. Kim, W.-S. Jung, and B.-J. Lee, Modified Embedded-atom Method Interatomic Potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N Systems, J. Mater. Res., 2010, 25(7), p 1288-1297.

    Article  ADS  Google Scholar 

  31. Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton, Experimental and Molecular Dynamics Simulation Study of Structure of Liquid and Amorphous Ni62Nb38 Alloy, J. Chem. Phys., 2016, 145(20), p 1-10.

    Article  Google Scholar 

  32. I.I. Novoselov, A.Y. Kuksin, and A.V. Yanilkin, Energies of Formation and Structures of Point Defects at Tilt Grain Boundaries in Molybdenum, Phys. Solid State, 2014, 56, p 1401-1407.

    Article  ADS  Google Scholar 

  33. J. Wang, and I.J. Beyerlein, Atomic Structures of [0-110] Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) Crystals Model, Simul. Mater. Sci. Eng., 2012, 20, p 3557-3568.

    Article  Google Scholar 

  34. J.W. Cahl, Y. Mishin, and A. Suzuki, Coupling Grain Boundary Motion to Shear Deformation, Acta Mater., 2006, 54, p 4953-4975.

    Article  ADS  Google Scholar 

  35. V.V. Popov, Mossbauer Spectroscopy of Interfaces in Metals, Phys. Met. Metallogr., 2012, 113(13), p 1257-1289.

    Article  ADS  Google Scholar 

  36. E.N. Hahn, S.J. Fensin, T.C. Germann, and M.A. Meyers, Symmetric Tilt Boundaries in Body-Centered Cubic Tantalum, Scr. Mater., 2016, 116, p 108-111.

    Article  Google Scholar 

  37. D. Wolf, Correlation Between the Energy and Structure of Grain Boundaries in B.c.c. Metals. II. Symmetrical Tilt Boundaries, Philos. Mag. A., 1990, 62(4), p 447-464.

    Article  ADS  Google Scholar 

  38. T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R.E. Rudd, Structures and Transitions in Bcc Tungsten Grain Boundaries and Their Role in the Absorption of Point Defects, Acta Mater., 2018, 159, p 123-134.

    Article  ADS  Google Scholar 

  39. M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Probing Grain Boundary Sink Strength at the Nanoscale: Energetics and Length Scales of Vacancy and Interstitial Absorption by Grain Boundaries in α-Fe, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, p 1-21.

    Article  Google Scholar 

  40. M.G. Urazaliev, M.E. Stupak, and V.V. Popov, Structure and Energy of Symmetric Tilt Boundaries with the <110> Axis in Ni and the Energy of Formation of Vacancies in Grain Boundaries, Phys. Met. Metallog., 2021, 12(7), p 665-672.

    Article  Google Scholar 

  41. A. Hallil, A. Metsu, J. Bouhattate, and X. Feaugas, Correlation Between Vacancy Formation and Σ3 Grain Boundary Structures in Nickel from Atomistic Simulations, Philos. Mag., 2016, 96(20), p 2088-2114.

    Article  ADS  Google Scholar 

  42. T. Surholt, Y. Mishin, and C. Herzig, Grain-Boundary Diffusion and Segregation of Gold in Copper: Investigation in Type-B and Type-C Kinetic Regimes, Phys. Rev. B Condens. Matter Mater. Phys., 1994, 50(6), p 3577-3587.

    Article  ADS  Google Scholar 

  43. A. Inoue, H. Nitta, and Y. Iijima, Grain Boundary Self-Diffusion in High Purity Iron, Acta Mater., 2007, 55, p 5910-5916.

    Article  ADS  Google Scholar 

  44. S.V. Divinski, G. Reglitz, and G. Wilde, Grain Boundary Self-Diffusion in Polycrystalline Nickel of Different Purity Levels, Acta Mater., 2010, 58, p 386-395.

    Article  ADS  Google Scholar 

  45. G.J. Thomas, R.W. Siegel, and J.A. Eastman, Grain Boundaries in Nanophase Palladium: High Resolution Electron Microscopy and Image Simulation, Scr. Metall. Mater., 1990, 24, p 201-206.

    Article  Google Scholar 

  46. B. Fuitz, H. Kuwano, and H. Ouyang, Average Widths of Grain Boundaries in Nanophase Alloys Synthesized by Mechanical Attrition, J. Appl. Phys., 1995, 77, p 3458-3466.

    Article  ADS  Google Scholar 

  47. A. Suzuki, and Y. Mishin, Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries, Interface Sci., 2003, 11, p 131-148.

    Article  Google Scholar 

  48. I.I. Novoselov, AYu. Kuksin, and A.V. Yanilkin, Diffusion Coefficients of Vacancies and Interstitials Along Tilt Grain Boundaries in Molybdenum, Phys. Solid State., 2014, 56(5), p 1025-1032.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was carried out using the Uran supercomputer at IMM UB RAS. The study was funded by a Grant of Russian Science Foundation (project no. 21-13-00063). https://rscf.ru/project/21-13-00063/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Stupak, M.E. & Urazaliev, M.G. Atomistic Simulation of Grain Boundaries in Niobium: Structure, Energy, Point Defects and Grain-Boundary Self-Diffusion. J. Phase Equilib. Diffus. 43, 401–408 (2022). https://doi.org/10.1007/s11669-022-00981-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00981-6

Keywords

Navigation