Skip to main content
Log in

A molecular-dynamics simulation of grain-boundary diffusion of niobium and experimental investigation of its recrystallization in a niobium-copper system

  • Condensed-State Physics
  • Published:
Russian Physics Journal Aims and scope

A model of high-angle general-type grain boundaries is developed and grain-boundary diffusion of niobium in a Nb–Cu system is investigated using the method of molecular dynamics. The results of predictions of the effect of a copper impurity on grain-boundary self-diffusion of niobium are compared with the experimental data on diffusion annealing of multi-layered composites containing Cu/Nb boundaries. Recrystallization of polycrystalline niobium is investigated under the conditions of grain-boundary diffusion of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. R. Kolobov, Diffusion-Controlled Processes at Grain Boundaries and Plasticity of Metallic Composites [in Russian], Novosibirsk, Nauka (1998).

    Google Scholar 

  2. Yu. R. Kolobov, A. G. Lipnitskii, and G. P. Grabovetskaya, Russ. Phys. J., 51, No. 4, 385–399 (2008).

    Article  Google Scholar 

  3. D. Gupta, Diffusion Processes in Advanced Technological Materials, New York, Springer (2005).

    Book  Google Scholar 

  4. M. R. Sorensen, Yu. Mishin, and A. F. Voter, Phys. Rev. B, B62, No. 6, 3658–3673 (2000).

    Article  ADS  Google Scholar 

  5. A. G. Lipnitskii, A. V. Ivanov, and Yu. R. Kolobov, The Phys. Met. and Metallography, 101, Issue 3, 330–336 (2006).

    Google Scholar 

  6. S. M. Foiles, Phys. Rev. B, 40, No. 17, 11502–11506 (1989).

    Article  ADS  Google Scholar 

  7. A. Suzuki and Yu. Mishin, Intreface Science, 11, 131–148 (2003).

    Article  Google Scholar 

  8. A. G. Lipnitskii, I. V. Nelasov, and Yu. R. Kolobov, Defect Diffus. Forum., 309–310, 45–50 (2011).

    Article  Google Scholar 

  9. T. Surholt and Chr. Herzig, Acta Mater., 45, No. 9, 3817–3823 (1997).

    Article  Google Scholar 

  10. M. J. Demkowicz, R. G. Hoagland, and J. P. Hirth, Phys. Rev. Lett., No. 100, 136102(1)–136102(4) (2008).

  11. I. V. Nelasov, A. G. Lipnitskii, and Yu. R. Kolobov, Russ. Phys. J., 52, No. 11, 1193–1198 (2009).

    Article  Google Scholar 

  12. K. H. Lee and S. I. Hong, Mater. Sci. Forums, 503–504, 907–912 (2006).

    Article  Google Scholar 

  13. A. G. Lipnitskii, D. N. Maradudin, A. I. Kartamyshev, and I. V. Nelasov [in Russian], Academic Bulletin of Belgorod State University. Series: Mathematics. Physics, 27, No. 11, 160–167 (2012).

    Google Scholar 

  14. M. Koppers, Yu. Mishin, and Chr. Herzig, Acta Metal. Mater., 42, No. 8, 2859–2868 (1994).

  15. I. V. Nelasov, A. G. Lipnitskii, and V. Z. Dat [in Russian], Academic Bulletin of Belgorod State University. Series: Mathematics. Physics, 23, No. 11, 17–23(2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Lipnitskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 84–90, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipnitskii, A.G., Nelasov, I.V., Golosov, E.V. et al. A molecular-dynamics simulation of grain-boundary diffusion of niobium and experimental investigation of its recrystallization in a niobium-copper system. Russ Phys J 56, 330–337 (2013). https://doi.org/10.1007/s11182-013-0036-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0036-2

Keywords

Navigation