Skip to main content
Log in

Toward Durable Thermal Barrier Coating with Composite Phases and Low Thermal Conductivity

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High-efficiency turbine engines highly rely on the further improvement of the novel technologies related to combustion, cooling and thermal barrier coating (TBC) with the increase in inlet temperatures. Thermal barrier coatings with higher thermal stability and lower thermal conductivity (low-k) than current 8YSZ TBC had attracted a lot of academia and industries’ attentions and activities. The present work aimed to focus on exploring a path toward a durable TBC with better thermal durability and low-k capability by overcoming the technical, practical and economic barriers for current low-k TBC development and applications. The concept of composite phase ceramics was proposed for low-k TBC material design, in an effort to combine the desirable attributes of unique phase constitution, low conductivity k, high fracture toughness and good process economy. Further, thermal spray process was optimized for the topcoats of the low-k ceramics by controlling and measuring the effect of key process parameters on porous coating architecture, deposition rate and process efficiency. To evaluate the performance of the low-k TBCs, both an isothermal oxidation test and a thermal cycling test were conducted. The test results of the composite phase ceramics exhibited promising for a durable low-k TBC measured by several desirable property attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Ann. Rev. Mater Res., 2003, 33, p 383-417

    Article  CAS  Google Scholar 

  2. R. Vaßen, M. Jarligo, T. Steinke, D. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  3. J.H. Perepezko, The Hotter the Engine, the Better, Science, 2009, 326, p 1068-1069

    Article  CAS  Google Scholar 

  4. N. Curry, N. Markocsan, X. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2010, 20, p 108-115

    Article  Google Scholar 

  5. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37, p 891-898

    Article  CAS  Google Scholar 

  6. S. Stecura, Effects of Compositional Changes on the Performance of a Thermal Barrier Coating System, NASA TM-78976 Report, (1978)

  7. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  CAS  Google Scholar 

  8. V.S. Stabican, Phase Equilibria and Metastabilities in the Systems ZrO2-MgO, ZrO2-CaO and ZrO2-Y2O3, Adv. Ceram., 1984, 24A, p 71-85

    Google Scholar 

  9. D. Hasselman et al., Thermal Diffusivity & Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey, Am. Ceram. Soc. Bull., 1987, 66(5), p 799-806

    CAS  Google Scholar 

  10. K.W. Schlichting, N. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36(12), p 3003-3010

    Article  CAS  Google Scholar 

  11. D. Zhu and R.A. Miller, Thermal Conductivity and Sintering Resistance of Advanced Thermal Barrier Coatings, Ceram. Eng. Sci. Proc., 2002, 23, p 457-468

    Article  CAS  Google Scholar 

  12. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151–152, p 383-391

    Article  Google Scholar 

  13. X. Ma et al., Low Thermal Conductivity Thermal Barrier Coating Deposited by the Solution Plasma Spray Process, Surf. Coat. Technol., 2006, 201(7), p 4447-4452

    Article  CAS  Google Scholar 

  14. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028

    Article  CAS  Google Scholar 

  15. D. Sedmidubsky, O. Benes, and R.J.M. Konings, High Temperature Heat Capacity of Nd2Zr2O7 and La2Zr2O7 Pyrochlores, J. Chem. Thermodyn., 2005, 37, p 1098-1103

    Article  CAS  Google Scholar 

  16. W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, Low Thermal Conductivity Oxides, MRS Bull., 2012, 37, p 917-922

    Article  CAS  Google Scholar 

  17. M.R. Winter and D.R. Clarke, Oxide Materials with Low Thermal Conductivity, J. Am. Ceram. Soc., 2007, 90(2), p 533-540

    Article  CAS  Google Scholar 

  18. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  CAS  Google Scholar 

  19. R.M. Leckie, S. Krämer, M. Rühle, and C.G. Levi, Thermochemical Compatibility between Alumina and ZrO2-GdO3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53, p 3281-3292

    Article  CAS  Google Scholar 

  20. O. Koutny, J. Kratochvil, J. Svec, and J. Bednarek, Modeling of Packing Density for Particle Composites Design, J. Eur. Ceram. Soc., 1996, 18(3), p 275-278

    Google Scholar 

  21. X. Ma and P. Ruggiero, Cold Sprayed MCrAlY as a Bondcoat Candidate for TBC Application, Long Beach, CA, May, Proc. Int. Therm. Spray Conf., 2015, p 20-26

    Google Scholar 

  22. Y. Tamarin, Protective Coatings for Turbine Blades, ASM International, Materials Park, 2006, p 79-96

    Google Scholar 

  23. D. Zhu and R.A. Miller, Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-State Laser Heat-Flux Approach, NASA/TM-2004-213040 Report, ARL-TR-3262 (2004), p 1-18.

  24. W. Chi and S. Sampath, Microstructure–Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  CAS  Google Scholar 

  25. A.M. Limarga, S. Shian, M. Baram, and D.R. Clarke, Effect of High-Temperature Aging on the Thermal Conductivity of Nanocrystalline Tetragonal Yttria-Stabilized Zirconia, Acta Mater., 2012, 60, p 5417-5424

    Article  CAS  Google Scholar 

  26. X. Ma et al., Unpublished Report, Curtiss-Wright Surface Technologies, East Windsor, 2017

    Google Scholar 

  27. J.P. Angle, Z. Wang, C. Dames, and M.L. Mecartney, Comparison of Two-Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites, J. Am. Ceram. Soc., 2013, 96(9), p 2935-2942

    Article  CAS  Google Scholar 

  28. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010

    Article  CAS  Google Scholar 

  29. A. Keyvani, M. Bahamirian, and A. Kobayashi, Effect of Sintering Rate on the Porous Microstructural, Mechanical and Thermomechanical Properties of YSZ and CSZ TBC Coatings Undergoing Thermal Cycling, J. Alloy. Compd., 2017, 727, p 1057-1066

    Article  CAS  Google Scholar 

  30. B. Lv et al., Sintering Resistance of Advanced Plasma-Sprayed Thermal Barrier Coatings with Strain-Tolerant Microstructures, J. Eur. Ceram. Soc., 2018, 38(15), p 5092-5100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge technical assistance and experimental support from Mr. David Reynolds, Development Engineering, Curtiss-Wright Surface Technologies, East Windsor, CT; and Mr. David Christie for SEM/EDXS analyses, IMR Test Labs, Curtiss-Wright Corporation, Lansing, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqing Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Rivellini, K., Ruggiero, P. et al. Toward Durable Thermal Barrier Coating with Composite Phases and Low Thermal Conductivity. J Therm Spray Tech 29, 423–432 (2020). https://doi.org/10.1007/s11666-020-00979-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00979-x

Keywords

Navigation