Skip to main content

New Materials for Thermal Barrier Coatings: Design, Manufacturing and Performance

  • Chapter
  • First Online:
Ceramic Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 352 Accesses

Abstract

Ceramic thermal barrier coatings (TBCs) are aimed to protect the surface of metallic components of turbine engines exposed to extreme temperature as well as to environmental attack promoted by oxygen and molten deposits. Their application allows to extend component life and can improve thermal capability and efficiency of next-generation engines. TBC design includes detailed analysis of materials’ composition and TBC architecture. Basic requirements are demanded in terms of low thermal conductivity and high phase stability, whereas the porous and stress compliant microstructure should preserve high-temperature performance, since thermal cycling typically promotes partial sintering and thermal expansion mismatch between coating and substrate, thus assisting typical detrimental effects such as cracking, delamination and spallation. Yttria stabilized zirconia is the most common ceramic for industrial TBC manufacturing, under a large variety of operating environments. During the last decades, many ceramic oxides with potential enhanced properties were investigated and fabricated TBCs were tested at laboratory scale. However, prolonged high-temperature service requires further validation steps to successfully apply novel systems in real engines. This chapter explores state-of-the-art and recent developments in the matter of TBCs, focusing on the properties of novel compositions and TBC architectures, taking in account the main mechanisms inducing their in-service failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

3 Dimension

APS:

Air Plasma Spraying

CMAS:

Calcium Magnesium Aluminum Silicate

CTE:

Coefficient of Thermal Expansion

CYSZ:

Ceria Yttria co-Stabilized Zirconia

DED:

Direct Energy Deposition

DySZ:

Dysprosia Stabilized Zirconia

EB-PVD:

Electron Beam Physical Vapor Deposition

FGM:

Functionally Graded Material

GZ:

Gadolinium Zirconate

NdCSZ:

Neodymia Ceria Stabilized Zirconia

LaYSZ:

Lanthana Yttria Stabilized Zirconia

LC:

Lanthanum Cerate

LPPS:

Low Pressure Plasma Spraying

LZ:

Lanthanum Zirconate

PECs:

Pockets of energy concentration

PS-PVD:

Plasma Spraying Physical Vapor Deposition

ScYSZ:

Scandia Yttria Stabilized Zirconia

SPS:

Suspension Plasma Spraying

SPPS:

Solution Precursor Plasma Spraying

SZ:

Samarium Zirconate

TBC:

Thermal Barrier Coating

TGO:

Thermally Grown Oxide

YSZ:

Yttria Stabilized Zirconia

References

  1. Clarke, D.R., Oechsner, M., Padture, N.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37(10), 891–898 (2012)

    Article  CAS  Google Scholar 

  2. Lakiza, S.M., Grechanyuk, M.I., Ruban, O.K., et al.: Thermal barrier coatings: current status, search, and analysis. Powder Metall. Met. Ceram. 57, 82–113 (2018)

    Article  CAS  Google Scholar 

  3. Xu, L., Sun, Z., Ruan, Q., et al.: Development trend of cooling technology for the turbine blades at super-high temperature of above 2000 K. Energies 16, 668 (2023)

    Article  Google Scholar 

  4. Szczepankowski, A., Przysowa, R., Perczyinski, J., et al.: Health and durability of protective and thermal barrier coatings monitored in service by visual inspection. Coatings 12, 624 (2022)

    Article  CAS  Google Scholar 

  5. Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2022)

    Article  Google Scholar 

  6. Wee, S., Do, J., Kim, K., et al.: Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines. Appl. Sci. 10(16), 5476 (2020)

    Article  CAS  Google Scholar 

  7. Mehta, A., Vasudev, H., Singh, S., et al.: Processing and advancements in the development of thermal barrier coatings: a review. Coatings 12, 1318 (2022)

    Article  CAS  Google Scholar 

  8. Ghadami, F., Aghdam, A.S.R., Ghadami, S.: A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings. Sci. Rep. 11, 875 (2021)

    Article  CAS  Google Scholar 

  9. Meng, G.H., Liu, H., Liu, M.J.: Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen contents. Surf. Coat. Technol. 368, 192–201 (2019)

    Article  CAS  Google Scholar 

  10. Chen, Y., Zhao, X., Xiao, P.: Effect of microstructure on early oxidation of MCrAlY coatings. Acta Mater. 159, 150–162 (2018)

    Article  CAS  Google Scholar 

  11. Weng, W.X., Wang, Y.M., Liao, Y.M., et al.: Comparison of microstructural evolution and oxidation behavior of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings. Surf. Coat. Technol. 352, 285–294 (2018)

    Article  CAS  Google Scholar 

  12. Li, H.F., Zhou, Z.H., Hesnawi, A., et al.: A comparative study of two-layer NiAl bond coat TBC and its failure mechanism. Key Eng. Mater. 336–338, 1770–1772 (2007)

    Article  Google Scholar 

  13. Fan, X., Zhu, L., Huang, W.: Investigation of NiAl intermetallic compounds as bond coats for thermal barrier coatings on Mg alloy. J. Alloys Compd. 729(30), 617–626 (2017)).

    Google Scholar 

  14. Zhao, C., Luo, L., Xiao, C., et al.: The oxidation performance of plasma-sprayed NiAl bond coat: effect of Hf addition in bond coat and substrate. Surf. Coat. Technol. 352, 49–58 (2018)

    Article  CAS  Google Scholar 

  15. Chen, Y., Zhao, X., Xiao, P.: Effect of surface curvature on oxidation of a MCrAlY coating. Corrosion Sci. 163, 108256 (2020)

    Article  CAS  Google Scholar 

  16. Heydari, P.: A review on functionally graded-thermal barrier coatings (FG-TBC) fabrication methods in gas turbines. Am. J. Mech. Mater. Eng. 6(2), 18–26 (2022)

    Google Scholar 

  17. Latka, L., Pawlowski, L., Winnicki, M., et al.: Review of functionally graded thermal sprayed coatings. Appl. Sci. 10, 5153 (2020)

    Article  CAS  Google Scholar 

  18. Pakseresht, A.H., Rahimipour, M.R., Alizadeh, M., et al: Concept of advanced thermal barrier functional coatings in high temperature engineering components. In: Zuzuarregui, A., Morant-Minana, M.C. (eds.) Research Perspectives on Functional Micro- and Nanoscale Coatings, pp. 396–419. IGI Global, Hershey PA (2016)

    Google Scholar 

  19. Hille, T.S., Njidam, T.J., Sujker, A.S.J., et al.: Damage growth triggered by interface irregularities in thermal barrier coatings. Acta Mater. 57(9), 2624–2630 (2009)

    Article  CAS  Google Scholar 

  20. Yang, G.J., Suo, X.K., Li, R.G.: Introduction to advanced micro-nanocoating materials and thermal spray. In: Yang, G.J., Suo, X.K. (eds.) Micro and Nano Technologies, Advanced Nanomaterials and Coatings by Thermal Spray, pp. 1–11. Elsevier (2019)

    Google Scholar 

  21. Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings, 2nd edn. Wiley, New York (2009)

    Google Scholar 

  22. Uczak de Goes, W., Somhorst, J., Maroksan, M., et al: Suspension plasma-sprayed thermal barrier coatings for light-duty diesel engines. 28, 1674–1687 (2019)

    Google Scholar 

  23. Arhens, M., Lampenscherf, S., Vassen, R.: Deposition and characteristics of submicrometer-structured thermal barrier coatings by suspension plasma spraying. J. Therm. Spray Technol. 21(3–4), 432–442 (2012)

    Google Scholar 

  24. Mahade, S., Curry, N., Bjorklund, S., et al.: Engineered thermal barrier coatings deposited by suspension plasma spray. Mater. Lett. 209, 517–521 (2017)

    Article  CAS  Google Scholar 

  25. Jordan, E.H., Jiang, C., Gell, M.: The solution precursor plasma spray (SPS) process: a review with energy considerations. J. Therm. Spray Technol. 24, 1153–1165 (2015)

    Article  CAS  Google Scholar 

  26. Fauchais, P., Joulia, A., Goutier, S., et al.: Suspension and solution plasma spraying. J. Phys. D Appl. Phys. 46(22), 224015 (2013)

    Article  Google Scholar 

  27. Zhao, Y., Wen, J., Peyraut, F., et al.: Porous architecture and thermal properties of thermal barrier coatings deposited by suspension plasma spray. Surf. Coat. Technol. 386, 125462 (2020)

    Article  CAS  Google Scholar 

  28. Curry, N., Van Every, K., Snyder, T., et al.: Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings. Coatings 4, 630–650 (2014)

    Article  Google Scholar 

  29. Schulz, U., Leyens, C., Fritscher, K., et al.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7(1), 73–80 (2003)

    Article  CAS  Google Scholar 

  30. Mauer, G., Vassen, R.: Coatings with columnar microstructures for thermal barrier applications. Adv. Eng. Mater. 22, 1–9 (2020)

    Article  Google Scholar 

  31. Shen, Z., Liu, Z., Mu, R., et al.: LaGdZrO/YSZ thermal barrier coatings by EB-PVD: microstructure, thermal properties and failure mechanism. Chem. Eng. J. Adv. 5(15), 100073 (2021)

    Article  CAS  Google Scholar 

  32. Hu, X., Liu, G., Liu, Q., et al.: Failure mechanisms of EB-PVD thermal barrier coatings under the synergistic effect of thermal shock and CMAS corrosion. Coatings 12(9), 1290 (2022)

    Article  CAS  Google Scholar 

  33. Cheng, Z., Yang, J., Shao, F., et al.: Thermal stability of PS-PVD YSZ coatings with typical dense layered and columnar structures. Crystals 10(9), 826 (2020)

    Article  CAS  Google Scholar 

  34. Zhang, C., Chen, F., Huang, Z., et al.: Additive manufacturing of functionally graded materials: a review. Mater. Sci. Eng. A 764, 138209 (2019)

    Article  CAS  Google Scholar 

  35. Yan, L., Chen, Y., Liou, F.: Additive manufacturing of functionally graded metallic materials using laser metal deposition. Addit. Manuf. 31, 100901 (2020)

    CAS  Google Scholar 

  36. Rao, H., Oleksak, R.P., Favara, K., et al.: Behavior of yttria-stabilised zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet. Addit. Manuf. 31, 100932 (2020)

    CAS  Google Scholar 

  37. Bakan, E., Mack, D.E., Mauer, G., et al: High temperature materials for power generation in gas turbines. In: Guillon, O. (ed) Elsevier Series on Advanced Ceramic Materials, Advanced Ceramics for Energy Conversion and Storage, pp. 3–62. Elsevier (2020)

    Google Scholar 

  38. Trice, R.W., Su, Y.J., Mawdsley, J.R., et al.: Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J. Mater. Sci. 37(11), 2359–2365 (2002)

    Article  CAS  Google Scholar 

  39. Di Girolamo, G., Blasi, C., Pagnotta, L., et al.: Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing. Ceram. Int. 36(8), 2273–2280 (2010)

    Article  Google Scholar 

  40. Evans, A.G., Clarke, D.R., Levi, C.G.: The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28, 1405–1419 (2008)

    Article  CAS  Google Scholar 

  41. Vassen, R., Jarligo, M.O., Steinke, T., et al.: Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205, 938–942 (2010)

    Article  CAS  Google Scholar 

  42. Huang, Y., Hu, N., Zeng, Y., et al.: Effect of different types of pores on thermal conductivity of YSZ thermal barrier coatings. Coatings 9, 138 (2019)

    Article  Google Scholar 

  43. Clarke, D.R., Levi, C.G.: Material design for the next generation thermal barrier coatings. Ann. Rev. Mater. Res. 33(1), 383–417 (2003)

    Article  CAS  Google Scholar 

  44. Gandhi, A.S.: Materials aspects of thermal barrier coatings. In: Mahajan, Y.R., Johnson, R. (eds.) Handbook of Advanced Ceramics and Composites, pp. 1443–1463. Springer, Cham (2020)

    Google Scholar 

  45. Jadhav, A.D., Padture, N.P.: Mechanical properties of solution-precursor plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 202, 4976–4979 (2008)

    Article  CAS  Google Scholar 

  46. Chen, X., Honda, H., Kuroda, S., et al.: Highly segmented thermal barrier coatings deposited by suspension plasma spray: effects of spray process on microstructure. J. Therm. Spray Technol. 25, 1638–1649 (2016)

    Article  CAS  Google Scholar 

  47. Guignard, A., Mauer, G., Vassen, R., et al.: Deposition and Characteristics of submicrometer structured thermal barrier coatings by suspension plasma spraying. J. Therm. Spray Technol. 21(3–4), 416–424 (2012)

    Article  CAS  Google Scholar 

  48. Jiang, K., Liu, S., Wang, X.: Low-thermal conductivity and high-toughness CeO2-Gd2O3 co-stabilised zirconia ceramic for potential thermal barrier coating applications. J. Eur. Ceram. Soc. 38, 3986–39993 (2018)

    Article  CAS  Google Scholar 

  49. Tabatabaeian, M.R., Rahmanifard, R., Seyed Jalili, Y.: The study of phase stability and thermal shock resistance of Scandia-ceria stabilized zirconia as a new TBC material. Surf. Coat. Technol. 374, 752–762 (2019)

    Article  CAS  Google Scholar 

  50. Bobzin, K., Zhao, L., Ote, M., et al.: A highly porous thermal barrier coating based on Gd2O3-Yb2O3 co-doped YSZ. Surf. Coat. Technol. 366, 349–354 (2019)

    Article  CAS  Google Scholar 

  51. Khan, M., Zeng, Y., Lan, Z., et al.: Reduced thermal conductivity of solid solution of 20% CeO2 + ZrO2 and 8% Y2O3 + ZrO2 prepared by atmospheric plasma spray technique. Ceram. Int. 45, 839–842 (2019)

    Article  CAS  Google Scholar 

  52. Di Girolamo, G., Blasi, C., Schioppa, M., et al.: Structure and thermal properties, of heat-treated plasma sprayed ceria-yttria co-stabilized zirconia coatings. Ceram. Int. 36, 961–968 (2010)

    Article  Google Scholar 

  53. Sodeoka, S., Suzuki, M., Ueno, K.: Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings. J. Therm. Spray Technol. 6, 361–367 (1997)

    Article  CAS  Google Scholar 

  54. Alfano, M., Di Girolamo, G., Pagnotta, L., et al.: The influence of high temperature sintering on microstructure and mechanical properties of APS CeO2-Y2O3-ZrO2 coatings. J. Mater. Sci. 45(10), 2662–2669 (2010)

    Article  CAS  Google Scholar 

  55. Jin, L., Yu, Q., Ni, L., et al: Microstructure and thermal properties of nanostructured 8 wt.% CeO2 doped YSZ coatings prepared by atmospheric plasma spraying. J. Therm. Spray Technol. 21(5), 928–934 (2012)

    Google Scholar 

  56. Latka, L., Cattini, A., Chicot, D., et al.: Mechanical properties of yttria-and ceria-stabilized zirconia coatings obtained by suspension plasma spraying. J. Therm. Spray Technol. 22(2–3), 125–130 (2013)

    Article  CAS  Google Scholar 

  57. Wu, S. Zhao, Y., Li, W., et al: Research progresses on ceramic materials of thermal barrier coatings on gas turbine. Coatings 11(1) 79, 1–18 (2021)

    Google Scholar 

  58. Curry, N., Markocsan, N., Ostergren, L.G., et al.: Evaluation of the Llfetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J. Therm. Spray Technol. 22(6), 864–872 (2013)

    Article  CAS  Google Scholar 

  59. Qu, L., Choy, K.L., Wheatley, R.: Enhanced doping effects of multielement on anisotropic thermal expansion in ZrO2 with new compositions. J. Am. Ceram. Soc. 103, 5881–5890 (2020)

    Article  CAS  Google Scholar 

  60. Paul, S., Cipitria, A., Tsipas, S.A., et al.: Sintering characteristics of plasma-sprayed zirconia coatings containing different stabilisers. Surf. Coat. Technol. 203(8), 1069–1074 (2009)

    Article  CAS  Google Scholar 

  61. Shi, Q., Yuan, W., Chao, X., et al.: Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. J. Sol-Gel Technol. 84, 341–348 (2017)

    Article  CAS  Google Scholar 

  62. Guo, X., Lin, C., Zhang, J., et al.: Effect of La2O3 on microstructure and thermal conductivity of La2O3-doped YSZ coatings. Materials 12(18), 2966 (2019)

    Article  CAS  Google Scholar 

  63. Zhang, J., Guo, X., Jung, Y.G., et al.: Lanthanum zirconate based thermal barrier coatings: a review. Surf. Coat. Technol. 323, 18–29 (2017)

    Article  CAS  Google Scholar 

  64. Rauf, A., Yu, Q.H., Jin, L., et al.: Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scri. Mater. 66(2), 109–112 (2012)

    Article  CAS  Google Scholar 

  65. Dai, H., Li, J., Cao, X., et al: Thermal barrier coating material. US Patent US20097597971B2 (2009)

    Google Scholar 

  66. Dai, H., Zhong, X., Li, J., et al.: Neodymium-cerium oxide as new thermal barrier coating material. Surf. Coat. Technol. 201(6), 2527–2533 (2006)

    Article  CAS  Google Scholar 

  67. Fan, W., Bai, Y., Liu, Y.F., et al.: Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack. Ceram. Int. 45, 15763–15767 (2019)

    Article  CAS  Google Scholar 

  68. Fan, W., Wang, Z.Z., Bai, Y., et al.: Improved properties of Scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. J. Eur. Ceram. Soc. 38, 4502–4511 (2018)

    Article  CAS  Google Scholar 

  69. Cao, X.Q., Vassen, R., Stover, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)

    Article  CAS  Google Scholar 

  70. Zhang, J., Guo, X., Jung, J.G., et al.: Lanthanum zirconate based thermal barried coatings: a review. Surf. Coat. Technol. 323, 18–29 (2017)

    Article  CAS  Google Scholar 

  71. Vassen, R., Cao, X., Tietz, F., et al.: Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc. 83(8), 2023–2028 (2000)

    Article  CAS  Google Scholar 

  72. Di Girolamo, G., Marra, F., Blasi, C., et al.: High-temperature mechanical behavior of plasma sprayed lanthanum zirconate coatings. Ceram. Int. 40, 11433–11436 (2014)

    Article  Google Scholar 

  73. Wang, C., Wang, J., Wang, L., et al.: Nanocomposite lanthanum zirconate thermal barrier coating deposited by suspension plasma spray process. J. Therm. Spray Technol. 23(7), 1030–1036 (2014)

    Article  CAS  Google Scholar 

  74. Wu, J., Wei, X., Padture, N.P., et al.: Low-thermal conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J. Eur. Ceramc. Soc. 85, 3031–3035 (2002)

    Article  CAS  Google Scholar 

  75. Guo, X., Lu, Z., Park, H.Y., et al.: Thermal properties of La2Zr2O7 double-layer thermal barrier coatings. Adv. Appl. Ceram. 118(3), 91–97 (2019)

    Article  CAS  Google Scholar 

  76. Doleker, K.M., Karaoglanli, A.: Comparison of oxidation behavior of YSZ and Gd2Zr2O7 thermal barrier coatings (TBCs). Surf. Coat. Technol. 318, 198–207 (2017)

    Article  CAS  Google Scholar 

  77. Doleker, K.M., Karaoglanli, A., Ozgurluk, Y., et al.: Performance of single YSZ, Gd2Zr2O7 and double-layered YSZ/Gd2Zr2O7 thermal barrier coatings in isothermal oxidation test conditions. Vacuum 177, 109401 (2020)

    Article  CAS  Google Scholar 

  78. Ejaz, N., Ali, L., Ahmad, A., et al.: Thermo-physical properties measurement of advanced TBC materials with pyrochlore and perovskite structures. Key Eng. Mater. 778, 236–244 (2018)

    Article  Google Scholar 

  79. Subramanian, R.: Thermal barrier coatings having high phase stability. US Patent 6387539 (2002)

    Google Scholar 

  80. Lehmann, H., Pitzer, D., Pracht, G., et al.: Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Am. Ceram. Soc. 86(8), 1338–1344 (2003)

    Article  CAS  Google Scholar 

  81. Zhang, H., Sun, K., Xu, Q., et al: Thermal conductivity of (Sm1-xLax)Zr2O7 (x=0, 0.25, 0.5, 0.75 and 1) oxides for advanced thermal barrier coatings. J. Rare Earths 27, 222–226 (2009)

    Google Scholar 

  82. Wang, Y., Zhou, C.: Microstructure and thermal properties of nanostructured gadolinia doped yttria-stabilized zirconia thermal barrier coatings produced by air plasma spraying. Ceram. Int. 42, 13047–13052 (2016)

    Article  CAS  Google Scholar 

  83. Li, X., Ma, W., Wen, J., et al.: Preparation of SrZrO3 thermal barrier coating by solution precursor plasma spray. J. Therm. Spray Technol. 26, 371–377 (2017)

    Article  CAS  Google Scholar 

  84. Ma, W., Li, X., Meng, X., et al.: Microstructure and thermophysical properties of SrZrO3 thermal barrier coating prepared by solution precursor plasma spray. J. Therm. Spray Technol. 27, 1056–1063 (2018)

    Article  CAS  Google Scholar 

  85. Ma, W., Jarligo, M.O., Mack, D.E., et al.: New generation perovskite thermal barrier coating materials. J. Therm. Spray Technol. 17, 831–837 (2008)

    Article  CAS  Google Scholar 

  86. Gao, Y., Ma, W., Meng, X., et al.: Phase composition and thermal properties of Yb-Gd co-doped SrZrO3 coating) prepared by the solution precursor plasma spray. J. Therm. Spray Technol. 30, 1174–1182 (2021)

    Article  CAS  Google Scholar 

  87. Zhang, J., Bai, Y., Li, E., et al.: Yb2O3-Gd2O3 codoped strontium zirconate composite ceramics for potential thermal barrier coating applications. Int. J. Appl. Ceram. Technol. 17, 1608–1618 (2020)

    Article  CAS  Google Scholar 

  88. Khan, M. Zeng, Y.: Achieving low thermal conductivity in Sr(Zr0.9Yb0.05Gd0.05)O2.95: a suitable material for high temperature applications. Ceram. Int. 46, 28778–28784 (2020)

    Google Scholar 

  89. Zhang, H., Yuan, J., Song, W., et al.: Composition, mechanical properties and thermal cycling performance of YSZ toughened La2Ce2O7 composite thermal barrier coatings. Ceram. Int. 46, 6641–6651 (2020)

    Article  CAS  Google Scholar 

  90. Feng, B.B., Wang, Y., Jia, Q., et al.: Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings. Rare Met. 38, 689–694 (2019)

    Article  CAS  Google Scholar 

  91. Liu, X.Y., Yi, H., Che, J.W., et al.: Phase, compositional, structural, and chemical stability of La2Ce2O7 after high temperature heat treatment. Ceram. Int. 45, 5030–5035 (2019)

    Article  CAS  Google Scholar 

  92. Ma, W., Dong, H., Guo, H., et al.: Thermal cycling behavior of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying. Surf. Coat. Technol. 204, 3336–3370 (2010)

    Article  Google Scholar 

  93. Guo, H., Wang, Y., Wang, L., et al.: Thermal physical properties and thermal shock resistance of La2Ce2O7/YSZ thermal barrier coating. J. Therm. Spray Technol. 18(4), 665–671 (2009)

    Article  CAS  Google Scholar 

  94. Wu, P., Chong, X., Wu, F., et al.: Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics. J. Eur. Ceram. Soc. 40, 3111–3121 (2020)

    Article  CAS  Google Scholar 

  95. Wu, S., Zhao, Y., Li, W., et al.: Research progresses on ceramic materials of thermal barrier coatings on gas turbine. Coatings 11(79), 1–18 (2021)

    Google Scholar 

  96. Zhang, Q., Lu, K., Wang, S.H., et al.: Synthesis and thermophysical performances of (Nd1-xYbx)2AlTaO7 oxides for heat-insulation coating applications. Ceram. Int. 46, 26754–26759 (2020)

    Article  Google Scholar 

  97. Chen, X., Li, H., Zhang, H., et al.: Influence of Yb substitution for La on thermophysical property of La2AlTaO7 ceramics. Ceram. Int. 43(10), 7537–7542 (2017)

    Article  CAS  Google Scholar 

  98. Chen, X.G., Zhang, H.S., Tong, Y.P., et al: Thermophysical properties of Ln3Ce7Ta2O23.5 (Ln = Nd and La) composite oxides. Ceram. Int. 46, 8903–8909 (2020)

    Google Scholar 

  99. Chen, X.G., Yang, S.S., Song, Y., et al: Phase structures, thermophysical properties of Sm3Ce7Ta2O23.5 and Gd3Ce7Ta2O23.5 oxides for thermal barrier coating applications. Ceram. Int. 46, 8238–8243 (2020)

    Google Scholar 

  100. Zhang, S., Feng, Y., Tong, Y.P., et al: Thermal-physical performance of novel pyrochlore-type Ca3Ln3Ce7Ta2O26.5 (Ln = Nd and Dy) oxides. Ceram. Int. 46, 11416–11420 (2020).

    Google Scholar 

  101. Yang, K., Chen, L., Wu, F., et al.: Thermophysical properties of Yb(TaxNb1-x)O4 ceramics with different crystal structures. Ceram. Int. 40(8), 3111–3121 (2020)

    Google Scholar 

  102. Zheng, Q., Wu, F., Chen, L., et al.: Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Mater. Lett. 268, 127586 (2020)

    Article  CAS  Google Scholar 

  103. Cao, X.Q., Vassen, R., Tietz, F., et al.: New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides. J. Eur. Ceram. Soc. 26, 247–251 (2006)

    Article  CAS  Google Scholar 

  104. Amer, M., Curry, N., Hayat, Q., et al.: Cracking behavior of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Coatings 13(1), 107 (2023)

    Article  CAS  Google Scholar 

  105. Di Girolamo, G., Blasi, C., Brentari, A., et al.: Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying. Ceram. Int. 41(9), 11776–11785 (2015)

    Article  Google Scholar 

  106. Liu, Z.G., Zhang, W.H., Ouyang, J.H., et al.: Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying. J. Alloys Compd. 647, 438–444 (2015)

    Article  CAS  Google Scholar 

  107. Vassen, R., Traeger, F., Stoever, D.: New thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int. J. Appl. Ceram. Technol. 1, 351–361 (2004)

    Article  CAS  Google Scholar 

  108. Zhang, H., Guo, L., Ma, Y., et al: Thermal cycling behavior of (Gd0.9Yb0.1)2Zr2O7/8YSZ gradient thermal barrier coatings deposited on Hf-doped NiAl bond coat by EB-PVD. Surf. Coat. Technol. 258, 950–955 (2014)

    Google Scholar 

  109. Bakan, E., Mack, D.E., Mauer, G., et al.: Gadolinium zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure and thermal cycling behavior. J. Am. Ceram. Soc. 97, 4045–4051 (2014)

    Article  CAS  Google Scholar 

  110. Frommhertz, M., Scholz, A., Oechsner, M., et al.: Gadolinium zirconate/YSZ thermal barrier coatings: mixed-mode interfacial fracture toughness and sintering behavior. Surf. Coat. Technol. 286, 119–128 (2016)

    Article  Google Scholar 

  111. Zhong, X., Zhao, H., Zhou, X., et al.: Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating. J. Alloys Compd. 593, 50–55 (2014)

    Article  CAS  Google Scholar 

  112. Mahade, S., Curry, N., Bjorklund, S., et al.: Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf. Coat. Technol. 318, 208–216 (2016)

    Article  Google Scholar 

  113. Karaoglanli, A.C., Doleker, K.M., Ozgurluk, Y.: State of the art thermal barrier coating (TBC) materials and TBC failure mechanisms. In: Öchsner, A., Altenbach, H. (eds) Properties and Characterization of Modern Materials . Advanced Structured Materials, vol. 33. Springer, Singapore 441–452 (2017)

    Google Scholar 

  114. Mondal, K., Nunez, L., Downey, C.M., et al.: Thermal barrier coatings overview: design, manufacturing, and applications in high-temperature industries. Ind. Eng. Chem. Res. 60, 6061–6077 (2021)

    Article  CAS  Google Scholar 

  115. Pakseresht, A., Sharifianjazi, F., Esmaeilkhainian, A., et al.: Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: A systematic review. Mater. Des. 222, 111044 (2022)

    Article  CAS  Google Scholar 

  116. Hutchinson, J.W., Evans, A.G.: On the delamination of thermal barrier coatings in a thermal gradient. Surf. Coat. Technol. 149(2–3), 179–184 (2002)

    Article  CAS  Google Scholar 

  117. Essa, S.K., Chen, K., Liu, R., et al.: Failure Mechanisms of APS-YSZ-CoNiCrAlY Thermal Barrier Coating Under Isothermal Oxidation and Solid Particle Erosion. J. Therm. Spray Technol. 30(1–2), 424–441 (2021)

    Article  CAS  Google Scholar 

  118. Takahashi, R.J., Assis, J.M.K., Piorino Neto, F., et al: Heat treatment for TGO growth on NiCrAlY for TBC application. Mater. Res. Express 6, 126442 (2019)

    Google Scholar 

  119. Shi, J., Zhang, T., Sun, B., et al.: Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy. J. Alloys Compd. 844, 156093 (2020)

    Article  CAS  Google Scholar 

  120. Di Girolamo, G., Brentari, A., Blasi, C., et al.: High-temperature oxidation and oxide scale formation in plasma-sprayed CoNiCrAlYRe coatings. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45(12), 5362–5370 (2014)

    Article  Google Scholar 

  121. Di Girolamo, G., Alfano, M., Pagnotta, L., et al.: On the early stage isothermal oxidation of APS CoNiCrAlY coatings. J. Mater. Eng. Perf. 21(9), 1989–1997 (2012)

    Article  CAS  Google Scholar 

  122. Dong, H., Yang, G.J., Li, C.X., et al.: Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs. J. Am. Ceram. Soc. 97, 1226–1232 (2014)

    Article  CAS  Google Scholar 

  123. Liu, P., Jiang, P., Sun, Y., et al.: Numerical Analysis of stress evolution in thermal barrier coating system during two-stage growth of heterogeneous oxide. Ceram. Int. 47, 14311–14319 (2021)

    Article  CAS  Google Scholar 

  124. Jing, F., Yang, J., Tang, S., et al.: Quantitative characterization of the interfacial damage in EB-PVD thermal barrier coating. Coat. 12(984), 1–18 (2022)

    Google Scholar 

  125. Saremi, M., Afrasiabi, A., Kobayashi, A.: Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. 202, 3233–3238 (2008)

    Article  CAS  Google Scholar 

  126. Yuan, B., Harvey, C.M., Thomson, R.C., et al.: A new spallation mechanism of thermal barrier coatings and a generalized mechanical model. Compos. Struct. 227, 111314 (2019)

    Article  Google Scholar 

  127. Yan, J., Wang, X., Chen, K., et al.: Sintering modeling of thermal barrier coatings at elevated temperatures: a review of recent advances. Coatings 11(10), 1214 (2021)

    Article  CAS  Google Scholar 

  128. Wang, L.S., Song, J.B., Dong, H., et al.: Sintering-induced failure mechanism of thermal barrier coatings and sintering-resistant design. Coatings 12, 1083 (2022)

    Article  CAS  Google Scholar 

  129. Lv, B., Fan, X., Li, D., et al.: Towards enhanced sintering resistance: air-plasma-sprayed thermal barrier coating system with porosity gradient. J. Eur. Ceram. Soc. 38(4), 1946–1956 (2018)

    Article  CAS  Google Scholar 

  130. Kim, K., Kim, W.: Effect of heat treatment on microstructure and thermal conductivity of thermal barrier coating. Materials 14(24), 7801 (2021)

    Article  CAS  Google Scholar 

  131. Di Girolamo, G., Marra, F., Schioppa, M., et al.: Evolution of microstructural and mechanical properties of lanthanum zirconate thermal barrier coatings at high temperature. Surf. Coat. Technol. 268, 298–302 (2015)

    Article  Google Scholar 

  132. Liu, T., Chen, X., Yang, G.J., et al.: Properties evolution of plasma-sprayed La2Zr2O7 coating induced by pore structure evolution during thermal exposure. Ceram. Int. 42, 15485–15492 (2016)

    Article  CAS  Google Scholar 

  133. Huang, J., Chu, X., Yang, T., et al.: Achieving high anti-sintering performance of plasma-sprayed YSZ thermal barrier coatings through pores structure design. Surf. Coat. Technol. 435, 128259 (2022)

    Article  CAS  Google Scholar 

  134. Morelli, S., Bursich, S., Testa, V., et al.: CMAS corrosion and thermal cyclign fatigue resistance of alternative thermal barrier coating materials and architectures: a comparative evaluation. Surf. Coat. Technol. 439, 128433 (2022)

    Article  CAS  Google Scholar 

  135. Nieto, A., Agrawal, R., Bravo, L., et al.: Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings. Int. Mater. Rev. 66, 451–492 (2021)

    Article  CAS  Google Scholar 

  136. Drexler, J.M., Shinoda, K., Ortiz, A.L., et al.: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glass deposits. Acta Mater. 58, 6835–6844 (2010)

    Article  CAS  Google Scholar 

  137. Levi, C.G., Hutchinson, J.W., Vidal-Setif, M.H., et al.: Environmental degradation of thermal barrier coatings by molten deposits. MRS Bull. 37, 932–941 (2012)

    Article  CAS  Google Scholar 

  138. Peng, H., Wang, L., Guo, L., et al: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog. Nat. Sci.: Mater. Int. 22, 461–467 (2012)

    Google Scholar 

  139. Zhao, H., Levi, C.G., Wadley, H.N.G.: Molten silicate interactions with thermal barrier coatings. Surf. Coat. Technol. 251, 74–86 (2014)

    Article  CAS  Google Scholar 

  140. Kramer, S., Yang, J., Levi, C.G., et al.: Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89, 3167–3175 (2006)

    Article  CAS  Google Scholar 

  141. Wu, J., Guo, H.B., Gao, Y.Z., et al.: Microstructure and thermophysical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc. 31(10), 1881–1888 (2011)

    Article  CAS  Google Scholar 

  142. Boissonet, G., Chalk, C., Nicholls, J.R.: Thermal insulation of YSZ and Erbia-Doped Yttria-Stabilised Zirconia EB-PVD Thermal Barrier Coating Systems after CMAS Attack. Mater. 13(19), 4382 (2020)

    Article  Google Scholar 

  143. Kramer, S., Yang, J., Levi, C.G.: Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts. J. Am. Ceram. Soc. 91, 576–583 (2008)

    Article  CAS  Google Scholar 

  144. Deng, W., Fergus, J.W.: Effect of CMAS composition on hot corrosion behavior of gadolinium zirconate thermal barrier coatings materials. J. Electrochem. Soc. 164, C526–C531 (2017)

    Article  CAS  Google Scholar 

  145. Zhou, X., Wang, J., Yuan, J., et al: Calcium-magnesium-alumino-silicate induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic-layer thermal barrier coatings prepared by electron-beam-physical vapor deposition. J. Eur. Ceram. Soc. 38, 1897–1907 (2018)

    Google Scholar 

  146. Perrudin, F., Vidal-Setif, M.H., Rio, C., et al.: Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts. J. Eur. Ceram. Soc. 39, 4223–4232 (2019)

    Article  CAS  Google Scholar 

  147. Xia, J., Yang, L., Wu, R.T., et al.: On the resistance of rare-earth oxide-doped YSZ to high temperature volcanic ash attack. Surf. Coat. Technol. 307, 534–541 (2016)

    Article  CAS  Google Scholar 

  148. Kandasamy, P., Govindarajan, S., Gurusmay, S.: Volcanic ash infiltration resistance of new-generation thermal barrier coatings at 1150 °C. Surf. Coat. Technol. 401, 126226 (2020)

    Article  CAS  Google Scholar 

  149. Zhou, X., He, L., Cao, X., et al: La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate. Corros. Sci. 115, 143–151 (2017)

    Google Scholar 

  150. Wu, Y., Song., W., Dingwell, D.B., et al: Silicate ash-resistant novel thermal barrier coatings in gas turbines. Corros. Sci. 194, 109929 (2022)

    Google Scholar 

  151. Ye, F., Yuan, Y., Yan, S., et al.: High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium-magnesium-aluminosilicate (CMAS). Mater. Chem. Phys. 256, 123679 (2020)

    Article  CAS  Google Scholar 

  152. Chen, L., Hu, M., Guo, J., et al.: Mechanical and thermal properties of RETaO4 (RE=Yb, Lu, Sc) ceramics with monoclinic-prime phase. J. Mater. Sci. technol. 52, 20–28 (2020)

    Article  CAS  Google Scholar 

  153. Zhao, H., Begley, M.R., Heuer, A., et al.: Reaction, transformation and delamination of samarium zirconate thermal barrier coatings. Surf. Coat. Technol. 205, 4355–4365 (2011)

    Article  CAS  Google Scholar 

  154. Cai, L., Ma, W., Ma, B., et al.: Air plasma-sprayed La2Zr2O7-SrZrO3 composite thermal barrier coating subjected to CaO-MgO-Al2O3-SiO2 (CMAS). J. Therm. Spray Technol. 26, 1076–1083 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Di Girolamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Girolamo, G. (2024). New Materials for Thermal Barrier Coatings: Design, Manufacturing and Performance. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Ceramic Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40809-0_1

Download citation

Publish with us

Policies and ethics