Skip to main content
Log in

An Optical Emission Spectroscopy Study of Plasma–Precursor Interactions in Solution Precursor Plasma Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, optical emission spectroscopy is used to study plasma–liquid precursor interactions in a plasma spray process. A mapping of the plasma jet is performed with a bundle of seven optical fibers while injecting various liquid precursors. The decomposition of two suspensions containing a titania (TiO2) powder in different solvents and that of one solution containing titanium butoxide is analyzed inside a radio frequency thermal plasma. For each precursor, the evolution of both temperature and titanium density along the plasma jet is observed. Two different plasma compositions were used to study their effects on the precursor decomposition. For each experiment, x-ray diffraction was performed on the collected powder to correlate OES observations with the structure and composition of the powder. Comparing these results brings a new understanding of the precursor decomposition inside the plasma, while the noted contrasts between water and ethanol as solvent, and between the use of a powder and that of an alkoxide as a source of titanium, help to assess the effect of these parameters on the plasma spray process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177-178, p 97-102

    Article  Google Scholar 

  2. S. Bastien and N. Braidy, Controlled Synthesis of Nickel Ferrite Nanocrystals with Tunable Properties Using a Novel Induction Thermal Plasma Method, J. Appl. Phys., 2014, 114(21), p 1-8

    Google Scholar 

  3. B. Pateyron, N. Calve, and L. Pawlowski, Influence of Water and Ethanol on Transport Properties of the Jets Used in Suspension Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 257-260

    Article  Google Scholar 

  4. P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D Appl. Phys., 2013, 46(22), p 224015

    Article  Google Scholar 

  5. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138

    Article  Google Scholar 

  6. D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, Am. Ceram. Soc., 2008, 91(3), p 865-872

    Article  Google Scholar 

  7. D. Chen, E.H. Jordan, and M. Gell, Porous TiO2 Coating Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(24), p 6113-6119

    Article  Google Scholar 

  8. D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Spray Coatings: Influence of Solvent Type, Plasma Chem. Plasma Process., 2010, 30(1), p 111-119

    Article  Google Scholar 

  9. L. Du, T.W. Coyle, K. Chien, L. Pershin, T. Li, and M. Golozar, Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 915-924

    Article  Google Scholar 

  10. D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855-874

    Article  Google Scholar 

  11. National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed Sept 2017

  12. A.W. Irwin, Polynomial Partition Function Approximation of 344 Atomic and Molecular Species, Astrophys. J. Suppl. Ser., 1981, 45, p 621-633

    Article  Google Scholar 

  13. N.K. Joshi, S.N. Sahasrabudhe, K.P. Sreekumar, and N. Venkatramani, Variation of Axial Temperature in Thermal Plasma Jets, Meas. Sci. Technol., 1997, 8(10), p 1146-1150

    Article  Google Scholar 

  14. F. Bourg, S. Pellerin, D. Morvan, J. Amouroux, and J. Chapelle, Study of an Argon-Hydrogen RF Inductive Thermal Plasma Torch Used for Silicon Deposition by Optical Emission Spectroscopy, Sol. Energy Mater. Sol. Cells, 2002, 72(1-4), p 361-371

    Article  Google Scholar 

  15. G. Mauer and R. Vaßen, Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties, J. Phys. Conf. Ser., 2012, 406, p 1-12

    Article  Google Scholar 

  16. C.G. Parigger, A.C. Woods, D.M. Surmick, G. Gautam, M.J. Witte, and J.O. Hornkohl, Computation of Diatomic Molecular Spectra for Selected Transitions of Aluminum Monoxide, Cyanide, Diatomic Carbon, and Titanium Monoxide, Spectrochim. Acta Part B At. Spectrosc., 2015, 107, p 132-138

    Article  Google Scholar 

  17. J. Hermann, A. Perrone, and C. Dutouquet, Analyses of the TiO-γ System for Temperature Measurements in a Laser-Induced Plasma, J. Phys. B At. Mol. Opt. Phys., 2001, 34(2), p 153-164

    Article  Google Scholar 

  18. R.A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., 1957, 29(5), p 760-762

    Article  Google Scholar 

  19. Y. Li and T. Ishigaki, Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt, J. Cryst. Growth, 2002, 242(3), p 511-516

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Fonds de recherche du Québec - Nature et technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada (NSERC) and Université de Sherbrooke is gratefully acknowledged. The authors also appreciate the technical support from Kossi Béré.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Veilleux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menneveux, J., Veilleux, J. An Optical Emission Spectroscopy Study of Plasma–Precursor Interactions in Solution Precursor Plasma Spray. J Therm Spray Tech 28, 3–11 (2019). https://doi.org/10.1007/s11666-018-0795-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0795-y

Keywords

Navigation