Skip to main content
Log in

Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Natarajan and B. Raj, Fast Reactor Fuel Reprocessing Technology in India, J. Nucl. Sci. Technol., 2007, 44, p 393-397

    Article  Google Scholar 

  2. G. Scott Barney, The Kinetic of Plutonium Oxide Dissolution in Nitric/Hydrofluoric Acid Mixtures, J. Inorg. Nucl. Chem., 1977, 39, p 1665-1669

    Article  Google Scholar 

  3. A.L. Uriarte and R.H. Rainey, “Dissolution of High-Density UO2, PuO2, and UO2-PuO2 Pellets in Inorganic Acids”, ORNL—3695, The U.S. Atomic Energy Commission, Oak Ridge, 1965

    Book  Google Scholar 

  4. B. Raj and U. Kamachi Mudali, Materials Development and Corrosion Problems in Nuclear Reprocessing Plants, Prog. Nucl. Energy., 2006, 48, p 283-313

    Article  Google Scholar 

  5. U. Kamachi Mudali, R.K. Dayal, and J.B. Gnanamoorthy, Corrosion Studies on Materials of Construction for Spent Nuclear Fuel Reprocessing Plant Equipments, J. Nucl. Mater., 1993, 203, p 73-82

    Article  Google Scholar 

  6. J. Jayaraj, P. Krishnaveni, D. Nanda Gopala Krishna, C. Mallika, and U. Kamachi Mudali, Corrosion Investigation on Zircaloy-4 and Titanium Dissolver Materials for MOX Fuel Dissolution in Concentrated Nitric Acid Containing Fluoride Ions, J. Nucl. Mater., 2016, 473, p 157-166

    Article  Google Scholar 

  7. A. Robin and J.L. Rosa, Corrosion Behaviour of Niobium, Tantalum and their Alloys in Hot Hydrochloric and Phosphoric Acid Solutions, Int. J. Refract. Met. Hard Mater., 2000, 18, p 13-21

    Article  Google Scholar 

  8. B.D. Craig and D.B. Anderson, Handbook of Corrosion Data, 2nd ed., ASM International, Russel Townlship, 1995, p 66-71

    Google Scholar 

  9. K. Hauffe, and R. Bender, Tantalum, Niobium and Their Alloys, Corrosion Handbook, A37, 2008, https://doi.org/10.1002/9783527610433.

  10. F. Cardarelli, P. Taxil, and A. Savall, Tantalum Protective Thin Coatings Techniques for the Chemical Process Industry: Molten Salts Electrocoating as a New Alternative, Int. J. Refract. Met. Hard Mater., 1996, 14, p 365-381

    Article  Google Scholar 

  11. A. Ravi Shankar and U. Kamachi Mudali, Refractory Metal Coatings on Titanium to Improve Corrosion Resistance in Nitric Acid Medium, Surf. Coat. Technol., 2013, 235, p 155-164

    Article  Google Scholar 

  12. A. Ravi Shankar and U. Kamachi Mudali, Refractory Oxide Coatings on Titanium for Nitric Acid Applications, Metall. Mater. Trans. B, 2014, 54, p 3560-3577

    Article  Google Scholar 

  13. H. Koivuluoto, J. Nakki, and P. Vuoristo, Corrosion Properties of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2009, 18, p 75-82

    Article  Google Scholar 

  14. H. Koivuluoto, G. Bolelli, L. Lusvarghi, F. Casadei, and P. Vuoristo, Corrosion Resistance of Cold-Sprayed Ta Coatings in Very Aggressive Conditions, Sur. Coat. Technol, 2010, 205, p 1103-1107

    Article  Google Scholar 

  15. S. Kumar and A. Arjuna Rao, Influence of Coating on the Corrosion Behaviour of Cold Sprayed Refractory Metals, Appl. Surf. Sci., 2017, 396, p 760-773

    Article  Google Scholar 

  16. S. Kumar, V. Vidyasagar, A. Jyothirmayi, and S.V. Joshi, Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2016, 25, p 745-756

    Article  Google Scholar 

  17. E. Lugscheider, H. Eschnauer, B. Hauser, and D. Jager, Vacuum Plasma Spraying of Tantalum and Niobium, J. Vac. Sci. Technol., A, 1985, 3, p 2469-2474

    Article  Google Scholar 

  18. H.D. Steffens, H.M. Hohle, and E. Erturk, Low Pressure Plasma Spraying of Reactive Materials, Thin Solid Films, 1980, 73, p 19-29

    Article  Google Scholar 

  19. T. Kinos, S.L. Chen, P. Siitonen, and P. Kettunen, Densification of Plasma-Sprayed Titanium and Tantalum Coatings, J. Therm. Spray Technol., 1996, 5, p 439-444

    Article  Google Scholar 

  20. ASTM A262-15, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, West Conshohocken, PA, 2015

    Google Scholar 

  21. H.J.T. Ellingham, Reducibility of Oxides and Sulphides in Metallurgical Processes, J. Soc. Chem. Ind., 1944, 63, p 125-160. https://doi.org/10.1002/jctb.5000630501

    Article  Google Scholar 

  22. K.T. Jacob, C. Shekhar, and Y. Waseda, An Update on the Thermodynamics of Ta2O5, J. Chem. Thermodyn., 2009, 41, p 748-753

    Article  Google Scholar 

  23. S. Ignatowicz and M.W. Davies, The Free Energy of Formation of NbO and Ta2O5, J. Less-Common Metals., 1968, 15, p 100-102

    Article  Google Scholar 

  24. S. Ningshen and M. Sakairi, Corrosion Degradation of AISI, Type 304L Stainless Steel for Application in Nuclear Reprocessing Plant, J. Solid State Electrochem., 2015, 19, p 3533-3542

    Article  Google Scholar 

  25. E. Otero, A. Pardo, E. Saenz, M. Utrilla, and P. Hierro, A Study of the Influence of Nitric Acid Concentration on the Corrosion Resistance of Sintered Austenitic Stainless Steel, Corros. Sci., 1996, 38, p 1485-1493

    Article  Google Scholar 

  26. M.G. Fontana, Corrosion Engineering, 3rd ed., Tata McGraw-Hill, Delhi, 2005

    Google Scholar 

  27. M.V. Diamanti, B.D. Curto, and M.P. Pedeferri, Interference Colors of Thin Oxide Layers on Titanium, Color Res. Appl., 2008, 33, p 221-228

    Article  Google Scholar 

  28. G.F. Vander Voort, Metallography: Principles and Practice, 1st ed., ASM International, Russel Township, 1999

    Google Scholar 

  29. J. Kragten, Atlas of Metal Ligand Equilibria in Aqueous Solution, Wiley, Hoboken, 1978

    Google Scholar 

  30. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd ed., Springer, Berlin, 1991

    Google Scholar 

  31. A.M. Schmidt and D.S. Schermann, Corrosion Behavior of Ti and Ti6Al4 V in Citrate Buffers Containing Fluoride Ions, Mater. Res., 2010, 33, p 45-50

    Article  Google Scholar 

  32. G.H. Kelsall and D.J. Robbins, Thermodynamics of Ti-H2O-F(-Fe) systems at 298 K, J. Electroanal. Chem., 1990, 283, p 135-157

    Article  Google Scholar 

  33. M. Bojinov and M. Stancheva, Coupling between Dissolution and Passivation Revisited—Kinetic Parameters of Anodic Oxidation of Titanium Alloys in a Fluoride-Containing Electrolyte, J. Electroanal. Chem., 2015, 737, p 150-161

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. G. Amarendra, Director, Metallurgy and Materials Group for his constant support and encouragement throughout this work. The authors acknowledge Mr. Yogesh Kumar, Avinash Kumar, and P.U. Jalendiran of CSTD, IGCAR for their technical support in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ningshen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrivendan, E., Jayaraj, J., Ningshen, S. et al. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media. J Therm Spray Tech 27, 512–523 (2018). https://doi.org/10.1007/s11666-017-0678-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0678-7

Keywords

Navigation