Skip to main content
Log in

Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The wear resistance of thermal spray coatings mainly depends on coating properties such as the microstructure, hardness, and porosity, as well as on the residual stress in the coating. The residual stress is induced by a variety of influences e.g., temperature gradients, difference of the thermal expansion coefficient of the coating/substrate materials, and the geometry of the components. To investigate the residual stress, the impulse excitation technique was employed to measure the Young’s and shear moduli. The residual stress was determined by the hole-drilling method and x-ray diffraction. Pin-on-Disk and Pin-on-Tube tests were used to investigate the wear behavior. After the wear tests, the wear volume was measured by means of a 3D-profilometer. The results show that the value of the residual stress can be modified by varying the coating thickness and the substrate geometry. The compressive stress in the HVOF-sprayed WC-Co coatings has a significant positive influence on the wear resistance whereas the tensile stress has a negative effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Chen, Y. Zhang, and C. Ding, Tribological Properties of Nanostructured Zirconia Coatings Deposited by Plasma Spraying, Wear, 2002, 253(7-8), p 885-893

    Article  Google Scholar 

  2. G. Sundararajan, K.U. Prasad, D.S. Rao, and S.V. Joshi, A Comparative Study of Tribological Behavior of Plasma and D-Gun Sprayed Coatings Under Different Wear Modes, J. Mater. Eng. Perform., 1998, 7(3), p 343-351

    Article  Google Scholar 

  3. W. Tillmann, I. Baumann, P.S. Hollingsworth, and L. Hagen, Sliding and Rolling Wear Behavior of HVOF-Sprayed Coatings Derived from Conventional, Fine and Nanostructured WC-12Co Powders, J. Therm. Spray Technol., 2014, 23(1-2), p 262-280

    Article  Google Scholar 

  4. S.F. Wayne, S. Sampath, and V. Anand, Wear Mechanisms in Thermally-Sprayed Mo-Based Coatings, Tribol. Trans., 2008, 37(3), p 636-640

    Article  Google Scholar 

  5. F.-W. Bach, K. Möhwald, B. Drößler, and L. Engl, Technik und Potenziale des Verschleißschutzes Mittels Thermisch Gespritzter Beschichtungen, Mat.-wiss. u. Werkstofftech., 2005, 36(8), p 353-359 (in German)

    Article  Google Scholar 

  6. H. Liao, B. Normand, and C. Coddet, Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings, Surf. Coat. Technol., 2000, 124(2-3), p 235-242

    Article  Google Scholar 

  7. D. Stewart, P. Shipway, and D. McCartney, Influence of Heat Treatment on the Abrasive Wear Behaviour of HVOF Sprayed WC-Co Coatings, Surf. Coat. Technol., 1998, 105(1-2), p 13-24

    Article  Google Scholar 

  8. S. Takeuchi, M. Ito, and K. Takeda, Modelling of Residual Stress in Plasma-Sprayed Coatings: Effect of Substrate Temperature, Surf. Coat. Technol., 1990, 43-44, p 426-435

    Article  Google Scholar 

  9. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York, 2008

    Book  Google Scholar 

  10. S. Sampath, X. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study For Ni-5 wt.%Al Bond Coats, Mater. Sci. Eng. A, 2004, 364(1-2), p 216-231

    Article  Google Scholar 

  11. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306(1), p 23-33

    Article  Google Scholar 

  12. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  13. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J. Therm. Spray Technol., 1992, 1(4), p 325-332

    Article  Google Scholar 

  14. P. Bansal, P.H. Shipway, and S.B. Leen, Effect of Particle Impact on Residual Stress Development in HVOF Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(4), p 570-575

    Article  Google Scholar 

  15. S. Kuroda, Ed., Properties and Characterization of Thermal Sprayed Coatings—A Review of Recent Research Progress. Proceedings of the 15th International Thermal Spray Conference 25-29 May, 1998.

  16. J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177-178, p 18-23

    Article  Google Scholar 

  17. M. Wenzelburger, D. López, and R. Gadow, Methods and Application of Residual Stress Analysis on Thermally Sprayed Coatings and Layer Composites, Surf. Coat. Technol., 2006, 201(5), p 1995-2001

    Article  Google Scholar 

  18. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: a Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  19. R. Gadow, M.J. Riegert-Escribano, and M. Buchmann, Residual Stress Analysis in Thermally Sprayed Layer Composites, Using the Hole Milling and Drilling Method, J. Therm. Spray Technol., 2005, 14(1), p 100-108

    Article  Google Scholar 

  20. M. Wenzelburger, M. Escribano, and R. Gadow, Modeling of Thermally Sprayed Coatings on Light Metal Substrates: Layer Growth and Residual Stress Formation, Surf. Coat. Technol., 2004, 180-181, p 429-435

    Article  Google Scholar 

  21. Y.Y. Santana, P.O. Renault, M. Sebastiani, J.G. La Barbera, J. Lesage, E. Bemporad, E. Le Bourhis, E.S. Puchi-Cabrera, and M.H. Staia, Characterization and Residual Stresses of WC-Co Thermally Sprayed Coatings, Surf. Coat. Technol., 2008, 202(18), p 4560-4565

    Article  Google Scholar 

  22. W. Tillmann, W. Luo, I. Baumann, P. Hollingsworth, B. Krebs, and L. Hagen, Optimization of Thermal Spray Coatings For Forming Tools, Zhingguo Biaomian Gongcheng (China Surface Engineering), 2012, 25(4), p 1-14 (in Chinese)

    Google Scholar 

  23. I. Baumann, Highly Wear-Resistant and Near-Net-Shape Tool Surfaces by Means of High Velocity Oxygen Fuel Flame Spraying Techniques, 5th ed., Vulkan-Verlag, Essen, 2012

    Google Scholar 

  24. D. Biermann, S. Goeke, W. Tillmann, and J. Nebel, Improvement of Wear Resistant Thermally Sprayed Coatings by Microfinishing, CIRP Ann. Manuf. Technol., 2013, 62(1), p 559-562

    Article  Google Scholar 

  25. S. Goeke, D. Biermann, D. Stickel, P. Stemmer, A. Fischer, K. Geenen, S. Huth, and W. Theisen, Enhancing the Surface Integrity of Tribologically Stressed Contacting Surfaces by an Adjusted Surface Topography, Procedia CIRP, 2014, 13, p 214-218

    Article  Google Scholar 

  26. F. Haase, “Eigenspannungsermittlung an dünnwandigen Bauteilen und Schichtverbunden”, Dissertation, Universität Dortmund, 1998 (in German).

  27. I.C. Noyan and J.B. Cohen, Residual Stress, Springer Verlag, New York, 1987

    Book  Google Scholar 

  28. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment, Elsevier, Amsterdam, 1997

    Google Scholar 

  29. B. Eigenmann and E. Macherauch, Röntgenographische Untersuchung von Spannungszuständen in Werkstoffen. Teil 2, Mat.-wiss. u. Werkstofftech., 1995, 26(4), p 199-216 (in German).

  30. W. Tillmann, U. Selvadurai, and W. Luo, Measurement of the Young’s Modulus of Thermal Spray Coatings by Means of Several Methods, J. Therm. Spray Technol., 2013, 22(2-3), p 290-298

    Article  Google Scholar 

  31. German Institute for Standardization, “Hochleistungskeramik-Mechanische Eigenschaften Monolithischer Keramik bei Raumtemperatur” (High Performance Ceramic—Mechanical Properties of Monolithic Ceramics at Room Temperature), DIN EN 843-2, German Institute for Standardization.

  32. U. Selvadurai, P. Hollingsworth, I. Baumann, B. Hussong, W. Tillmann, S. Rausch, and D. Biermann, Influence of the Handling Parameters on Residual Stresses of HVOF-Sprayed WC-12Co Coatings, Surf. Coat. Technol., 2015, 268, p 30-35

    Article  Google Scholar 

  33. W. Luo, W. Tillmann, and U. Selvadurai, In Situ Wear Test on Thermal Spray Coatings in a Large Chamber Scanning Electron Microscope, J. Therm. Spray Technol., 2015, 24(1-2), p 263-270

    Google Scholar 

  34. W. Tillmann, W. Luo, and U. Selvadurai, Wear Analysis of Thermal Spray Coatings on 3D Surfaces, J. Therm. Spray Technol., 2014, 23(1-2), p 245-251

    Article  Google Scholar 

  35. W. Tillmann, B. Hussong, T. Priggemeier, S. Kuhnt, N. Rudak, and H. Weinert, Influence of Parameter Variations on WC-Co Splat Formation in an HVOF Process Using a New Beam-Shutter Device, J. Therm. Spray Technol., 2013, 22(2-3), p 250-262

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted in close co-operation with the Institute of Machining Technology (ISF) and the Institute of Forming Technology and Lightweight Construction (IUL) at the TU Dortmund within the framework of the Collaborative Research Center (German: Sonderforschungsbereich), SFB 708, TP C2. The authors thank in particular S. Goeke (ISF, TU Dortmund) for the finishing of the coating on tubes and F. Steinbach (IUL, TU Dortmund) for the incremental hole-drilling measurement, as well as the German Research Foundation (German: Deutsche Forschungsgemeinschaft, DFG) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Selvadurai, U. & Tillmann, W. Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings. J Therm Spray Tech 25, 321–330 (2016). https://doi.org/10.1007/s11666-015-0309-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0309-0

Keywords

Navigation