Skip to main content
Log in

Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Failure in Atmospheric Plasma-Sprayed (APS) thermal barrier coatings (TBCs) is associated with the thermo-mechanical stresses developing due to the thermally grown oxide (TGO) layer growth and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs. Modeling has been shown as an effective tool to understand the effect of interface roughness on induced stresses. In the previous work done by our research group, it was observed that APS bondcoats performed better than the bondcoats sprayed with High Velocity Oxy-Fuel process which is contrary to the present literature data. The objective of this work was to understand this observed difference in lifetime with the help of finite element modeling by using real surface topographies. Different TGO layer thicknesses were evaluated. The modeling results were also compared with existing theories established on simplified sinusoidal profiles published in earlier works. It was shown that modeling can be used as an effective tool to understand the stress behavior in TBCs with different roughness profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.E. Evans, Oxidation Failure of TBC Systems: An Assessment of Mechanisms, Surf. Coat. Technol., 2011, 206, p 1512-1521

    Article  Google Scholar 

  2. T.S. Hille, S. Turteltaub, and A.S.J. Suiker, Oxide Growth and Damage Evolution in Thermal Barrier Coatings, Eng. Fract. Mech., 2011, 78, p 2139-2152

    Article  Google Scholar 

  3. D.-J. Kim, I.-H. Shin, J.-M. Koo, C.-S. Seok, and T.-W. Lee, Failure Mechanisms of Coin-Type Plasma-Sprayed Thermal Barrier Coatings with Thermal Fatigue, Surf. Coat. Technol., 2010, 205, p S451-S458

    Article  Google Scholar 

  4. R. Vaßen, S. Giesen, and D. Stöver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18(5-6), p 835-845

    Article  Google Scholar 

  5. O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part I: Experiments, Surf. Coat. Technol., 2008, 202, p 5027-5032

    Article  Google Scholar 

  6. W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, The Growth and Influence of Thermally Grown Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2006, 201, p 1074-1079

    Article  Google Scholar 

  7. D. Zhu, S.R. Choi, and R.A. Miller, Development and Thermal Fatigue Testing of Ceramic Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 188-189, p 146-152

    Article  Google Scholar 

  8. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342, p 120-130

    Article  Google Scholar 

  9. S. Kyaw, A. Jones, and T. Hyde, Predicting Failure Within TBC System: Finite Element Simulation of Stress Within TBC System as Affected by Sintering of APS TBC, Geometry of Substrate and Creep of TGO, Eng. Failure Anal., 2013, 27, p 150-164

    Article  Google Scholar 

  10. S. Wei, W. Fu-chi, F. Qun-bo, and M. Zhuang, Lifetime Prediction of Plasma-Sprayed Thermal Barrier Coating Systems, Surf. Coat. Technol., 2013, 217, p 39-45

    Article  Google Scholar 

  11. M. Bäker, Finite Element Simulation of Interface Cracks in Thermal Barrier Coatings, Comput. Mater. Sci., 2012, 64, p 79-83

    Article  Google Scholar 

  12. M. Ranjbar-Far, J. Absi, and G. Mariaux, Finite Element Modeling of the Different Failure Mechanisms of a Plasma Sprayed Thermal Barrier Coatings System, J. Therm. Spray Technol., 2012, 21(6), p 1234-1244

    Article  Google Scholar 

  13. H.-Y. Qi and X.-G. Yang, Computational Analysis for Understanding the Failure Mechanism of APS-TBC, Comput. Mater. Sci., 2012, 57, p 38-42

    Article  Google Scholar 

  14. S. Asghari and M. Salimi, Finite Element Simulation of Thermal Barrier Coating Performance Under Thermal Cycling, Surf. Coat. Technol., 2010, 205, p 2042-2050

    Article  Google Scholar 

  15. U. Hermosilla, M.S.A. Karunaratne, I.A. Jones, T.H. Hyde, and R.C. Thomson, Modelling the High Temperature Behaviour of TBCs Using Sequentially Coupled Microstructural-Mechanical FE Analyses, Mater. Sci. Eng., A, 2009, 513-514, p 302-310

    Article  Google Scholar 

  16. M. Białas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 6002-6010

    Article  Google Scholar 

  17. P. Bednarz, “Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems,” Ph.D. thesis, Forschungszentrum Jülich GmbH, 2007

  18. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Eng. Failure Anal., 2006, 13, p 409-426

    Article  Google Scholar 

  19. H. Brodin, M. Jinnestrand, and S. Sjöström, Modelling and Experimental Verification of Delamination Crack Growth in an Air-Plasma-Sprayed Thermal Barrier Coating, 15th European Conference of Fracture (ECF15), Stockholm, Sweden, 2004

  20. B.G. Nair, J.P. Singh, and M. Grimsditch, Stress Analysis in Thermal Barrier Coatings Subjected to Long-Term Exposure in Simulated Turbine Conditions, J. Mater. Sci., 2004, 39, p 2043-2051

    Article  Google Scholar 

  21. M.Y. He, J.W. Hutchinson, and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-Sprayed Thermal Barrier System Upon Thermal Cycling, Mater. Sci. Eng., A, 2003, 345, p 172-178

    Article  Google Scholar 

  22. M. Ahrens, R. Vaßen, and D. Stöver, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings as a Function of Interface Roughness and Oxide Scale Thickness, Surf. Coat. Technol., 2002, 161, p 26-35

    Article  Google Scholar 

  23. E.P. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System. Part I: Model Formulation, Acta Mater., 2001, 49, p 1515-1528

    Article  Google Scholar 

  24. M. Jinnestrand and S. Sjöström, Investigation by 3D FE Simulations of Delamination Crack Initiation in TBC Caused by Alumina Growth, Surf. Coat. Technol., 2001, 135, p 188-195

    Article  Google Scholar 

  25. R. Ghafouri-Azar, J. Mostaghimi, and S. Chandra, Modeling Development of Residual Stresses in Thermal Spray Coatings, Comput. Mater. Sci., 2006, 35, p 13-26

    Article  Google Scholar 

  26. B. Klusemann, R. Denzer, and B. Svendsen, Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings, J. Therm. Spray Technol., 2012, 21(1), p 96-107

    Article  Google Scholar 

  27. N. Curry, N. Markocsan, L. Östergren, X.-H. Li, and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia Stabilized Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2013, 22(6), p 864-872

    Article  Google Scholar 

  28. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202(12), p 2677-2683

    Article  Google Scholar 

  29. M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri, C. Giolli, and A. Scrivani, Isothermal Oxidation Resistance Comparison Between Air Plasma Sprayed, Vacuum Plasma Sprayed and High Velocity Oxygen Fuel Sprayed CoNiCrAlY Bond Coats, Surf. Coat. Technol., 2010, 204(15), p 2499-2503

    Article  Google Scholar 

  30. R. Vaßen, G. Kerkhoff, and D. Stöver, Development of A Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2001, 303, p 100-109

    Article  Google Scholar 

  31. S.A. Langer, E.R. Fuller, Jr., and W.C. Carter, OOF: An Image-Based Finite-Element Analysis of Material Microstructures, Comput. Sci. Eng., 2001, 3(3), p 15-23

    Article  Google Scholar 

  32. M. Gupta, N. Curry, N. Markocsan, and P. Nylén, Design of Next Generation Thermal Barrier Coatings—Experiments and Modelling, Surf. Coat. Technol., 2013, 220, p 20-26

    Article  Google Scholar 

  33. M. Gupta, P. Nylén, and J. Wigren, A Modelling Approach to Design of Microstructures in Thermal Barrier Coatings, J. Ceram. Sci. Technol., 2013, 04(02), p 85-92

    Google Scholar 

  34. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  Google Scholar 

  35. T. Patterson, A. Leon, B. Jayaraj, J. Liu, and Y.H. Sohn, Thermal Cyclic Lifetime and Oxidation Behavior of Air Plasma Sprayed CoNiCrAlY Bond Coats for Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 203, p 437-441

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kjell Niklasson at University West for the fruitful discussions and Stefan Rosén at Toponova AB for performing the white light interferometry and stripe projection measurements. Special thanks to Tobias Hansson, Chamara Kumara, and Sri Surya Pulim at University West for their help with simulation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Additional information

This article is an invited paper selected from presentations at the 2013 International Thermal Spray Conference, held May 13-15, 2013, in Busan, South Korea, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Skogsberg, K. & Nylén, P. Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings. J Therm Spray Tech 23, 170–181 (2014). https://doi.org/10.1007/s11666-013-0022-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0022-9

Keywords

Navigation