Skip to main content
Log in

Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Trompeter, V. Franzen, J. Witulski, and A. Tekkaya, Thermisch beschichtete Werkzeuge für die Blechumformung, Der Schnitt- & Stanzwerkzeugbau, Fachverlag Möller, Heft 5, 2009

  2. W. Tillmann, E. Vogli, I. Baumann, and J. Nebel, Verschleißminderung durch Wolframcarbid und Chromcarbid basierte Spritzschichten, W. Tillmann (Hg.), SFB 708-2, öffentliches Kolloquium, 2008

  3. S. Kuroda, Properties and Characterization of Thermal Sprayed Coatings: A Review of Recent Research Progress, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, p 539-550

  4. P. Ctibor, M. Kasparova, J. Bellin, E.L. Guen, and F. Zahalka, Plasma Spraying and Characterization of Tungsten {Carbide-Cobalt} Coatings by the Water-Stabilized System WSP, Adv. Mater. Sci. Eng., 2009, ID 254848

  5. A. Koutsomichalis, N. Vaxevanidis, G. Petropoulos, A. Mourlas, and S. Antoniou, Friction, Wear, and Mechanical Behavior of Plasma Sprayed WC-12%C9 Coatings on Mild, Proceedings of the 7th International Conference Coatings in Manufacturing Engineering, 2008, p 259-268

  6. S. Kuroda and T. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  CAS  Google Scholar 

  7. T. Clyne and S. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  CAS  Google Scholar 

  8. S. Takeuchi, M. Ito, and K. Takeda, Modelling of Residual Stress in Plasma-Sprayed Coatings: Effect of Substrate Temperature, Surf. Coat. Technol., 1990, 43-44, p 426-435

    Article  Google Scholar 

  9. Z. Taha-al, M. Hashmi, and B. Yilbas, Effect of WC on the Residual Stress in the Laser Treated HVOF Coating, J.·Mater. Process. Technol., 2009, 209(7), p 3172-3181

    Article  CAS  Google Scholar 

  10. S. Kuroda, T. Fukushima, and S. Kitahara, Simultaneous Measurement of Coating Thickness and Deposition Stress During Thermal Spraying, Thin Solid Films, 1988, 164, p 157-163

    Article  Google Scholar 

  11. J. Matejicek and S. Sampath, Intrinsic Residual Stresses in Single Splats Produced by Thermal Spray Processes, Acta Mater., 2001, 49(11), p 1993-1999

    Article  CAS  Google Scholar 

  12. Y. Santana, P. Renault, M. Sebastiani, J.L. Barbera, J. Lesage, E. Bemporad, E.L. Bourhis, E. Puchi-Cabrera, and M. Staia, Characterization and Residual Stresses of WC-Co Thermally Sprayed Coatings, Surf. Coat. Technol., 2008, 202(18), p 4560-4565

    Article  CAS  Google Scholar 

  13. R. Ghafouri-Azar, J. Mostaghimi, and S. Chandra, Modeling Development of Residual Stresses in Thermal Spray Coatings, Comput. Mater. Sci., 2006, 35(1), p 13-26

    Article  CAS  Google Scholar 

  14. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(12), p 78-86

    Article  CAS  Google Scholar 

  15. W. Tillmann, B. Klusemann, J. Nebel, and B. Svendsen, Analysis of the Mechanical Properties of an Arc-Sprayed WC-FeCSiMn Coating: Nanoindentation and Simulation, J. Therm. Spray Technol., 2011, 20(1), p 328-335

    Article  CAS  Google Scholar 

  16. K. Röttger, Festwalzen und Glattwalzen als wirtschaftliche Feinberarbeitungsverfahren. Konferenz-Einzelbericht: Moderne Schleiftechnologie und Feinstbearbetung, 5. Seminar Moderne Schleiftechnologie und Feinstbearbeitung, Stuttgart, Germany 13 May 2004, p. 19.1-19.13 (in German)

  17. V. Franzen, A. Brosisus, and A.E. Tekkaya, Optimierung der Funktionseigenschaften thermisch gespritzter Oberflächenbeschichtungen durch einen Glattwalzprozess, W. Tillmann (Hg.), SFB 708-3, öffentliches Kolloquium, 2009

  18. V. Franzen, M. Trompeter, A. Brosius, and A. Tekkaya, Finishing of Thermally Sprayed Tool Coatings for Sheet Metal Forming Operations by Roller Burnishing, Int.·J. Mater. Form., 2010, 3(1), p 147-150

    Article  Google Scholar 

  19. W. Tillmann, E. Vogli, and B. Krebs, Influence of the Spray Angle on the Characteristics of Atmospheric Plasma Sprayed Hard Material Based Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 948-955

    Article  CAS  Google Scholar 

  20. W. Tillmann, E. Vogli, B. Krebs, A.E. Tekkaya, A. Brosius, and V. Franzen, Densification of Atmospheric Plasma Sprayed Wear Resistant Coatings, International Thermal Spray Conference and Exposition (ITSC) 2009, May 4-7, 2009 (Las Vegas, USA), ASM international, 2009, p 1046-1051

  21. ASTM/E 837, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain Gage Method, 1995

  22. T. Schwarz and H. Kockelmann, Die Bohrlochmethode—ein für viele Anwendungsbereiche optimales Verfahren zur experimentellen Ermittlung von Eigenspannungen, Messtechnische Briefe, 1993, 29(2), p 33-38

    Google Scholar 

  23. S.A. Langer, E.R. Fuller, and W.C. Carter, OOF: An Image-Based Finite-Element Analysis of Material Microstructures, Comput. Sci. Eng., 2001, 3(3), p 15-23

    Article  Google Scholar 

  24. A.C. Reid, S.A. Langer, R.C. Lua, V.R. Coffman, S. Haan, and R.E. Garcia, Image-Based Finite Element Mesh Construction for Material Microstructures, Comput. Mater. Sci., 2008, 43(4), p 989-999

    Article  Google Scholar 

  25. A. Reid, R. Lua, R. Garca, V. Coffman, and S. Langer, Modelling Microstructures with OOF2, Int. J. Mater. Prod. Technol., 2009, 35(3-4), p 361-373

    Article  CAS  Google Scholar 

  26. C. Hortig and B. Svendsen, Simulation of Chip Formation During High-Speed Cutting, J. Mater. Process. Technol., 2007, 186(1-3), p 66-76

    Article  CAS  Google Scholar 

  27. T. Wiederkehr, B. Klusemann, D. Gies, H. Müller, and B. Svendsen, An Image Morphing Method for 3D Reconstruction and FE-Analysis of Pore Networks in Thermal Spray Coatings, Comput. Mater. Sci., 2010, 47(4), p 881-889

    Article  CAS  Google Scholar 

  28. E.A. Voce, Practical Strain Hardening Function, Metallurgia, 1955, 51, p 219-226

    Google Scholar 

  29. B. Svendsen, B. Klusemann, and C. Hortig, Lengthscale-Dependent Modelling of Ductile Failure in Metallic Microstructures, Int. J. Mater. Struct. Integr., 2010, 4(2-4), p 141-159

    Article  CAS  Google Scholar 

  30. L.D. Sokolov, A.N. Gladkikh, V.A. Skudnov, and V.M. Solenov, Mechanical Properties of Cobalt at Different Temperatures and Deformation Rates, Met. Sci. Heat Treat., 1969, 11(8), p 626-628

    Article  Google Scholar 

  31. V. Golovchan, On the Thermal Residual Microstresses in WC-Co Hard Metals, Int. J. Refract. Met. Hard Mater., 2007, 25(4), p 341-344

    Article  CAS  Google Scholar 

  32. H. Doi, Y. Fujiwara, K. Miyake, and Y. Oosawa, A Systematic Investigation of Elastic Moduli of Wc-Co Alloys, Metall. Mater. Trans. B, 1970, 1(5), p 1417-1425

    CAS  Google Scholar 

  33. S. Okamoto, Y. Nakazono, K. Otsuka, Y. Shimoitani, and J. Takada, Mechanical Properties of WC/Co Cemented Carbide with Larger WC Grain Size, Mater. Charact., 2005, 55(4-5), p 281-287

    Article  CAS  Google Scholar 

  34. W. Tillmann and J. Nebel, Analysis of the Mechanical Properties of an Arc Sprayed WC-FeCSiMn Coating: Compression, Bending, and Tension Behavior, J. Therm. Spray Technology, 2011, 20(1), p 317-327

    Article  CAS  Google Scholar 

  35. F. Hugot, J. Patru, P. Fauchais, and L. Bianchi, Modeling of a Substrate Thermomechanical Behavior During Plasma Spraying, J. Mater. Process. Technol., 2007, 190(1-3), p 317-324

    Article  CAS  Google Scholar 

  36. M. Gaona, R. Lima, and B. Marple, Influence of Particle Temperature and Velocity on the Microstructure and Mechanical Behaviour of High Velocity Oxy-Fuel (HVOF)-Sprayed Nanostructured Titania Coatings, J. Mater. Process. Technol., 2008, 198(1-3), p 426-435

    Article  CAS  Google Scholar 

  37. S. Wu, H. Zhang, Q. Tang, L. Chen, and G. Wang, Meshless Analysis of the Substrate Temperature in Plasma Spraying Process, Int. J. Therm. Sci., 2009, 48(4), p 674-681

    Article  CAS  Google Scholar 

  38. K. Röttger, “Walzen hartgedrehter Oberflächen,” Ph.D. thesis, RWTH Aachen, 2003

  39. T.H. Kim and A.V. Olver, Stress History in Rolling-Sliding Contact of Rough Surfaces, Tribol. Int., 1998, 31(12), p 727-736

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Volker Franzen from the Institute of Forming Technology and Lightweight Construction at the TU Dortmund for providing the experimental residual stress measurements by the hole-drilling method, and the Institute of Materials Engineering at the TU Dortmund for performing the thermal-spraying experiments. This study has been supported by the German Research Foundation (DFG) under the Research Center grant No. SFB 708 (TP B6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Klusemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klusemann, B., Denzer, R. & Svendsen, B. Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings. J Therm Spray Tech 21, 96–107 (2012). https://doi.org/10.1007/s11666-011-9690-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9690-5

Keywords

Navigation