Skip to main content
Log in

Mechanical Properties and Dissolution Behavior of Plasma Sprayed Wollastonite Coatings Deposited at Different Substrate Temperatures

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The effect of substrate temperature on the microstructure, mechanical properties and dissolution behavior of wollastonite coatings is investigated. The crystallinity of as-deposited coatings increases with increasing substrate temperature, whereas the porosity shows only a little variable tendency. The Knoop hardness and elastic modulus increase with the substrate temperature up to 400 °C firstly, and then a decrement is observed with the temperature further increasing to 600 °C. The dissolution rate characterized by the pH changes and the ion concentration changes of Ca, Si and P in SBF decreases with the increase in the substrate temperature. It can be concluded that increasing the substrate temperature is a feasible method to improve the mechanical properties and to decrease the dissolution rate of wollastonite coatings. However, the bioactivity of coatings deposited on preheated substrates is superior to those on non-preheated ones, which presumably results from their different phase compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. D’Angelo, M. Molina, G. Riva, G. Zatti, and P. Cherubino, Failure of Dual Radius Hydroxyapatite-Coated Acetabular Cups, J. Orthop. Surg., 2008, 3(35), doi: 10.1186/1749-799X-3-35

  2. P. Chandra, M. Azzabi, J. Miles, M. Andrews, and J. Bradley, Furlong Hydroxyapatite-Coated Hip Prosthesis vs the Charnley Cemented Hip Prosthesis, J. Arthroplasty, 2010, 25(1), p 52-57

    Article  Google Scholar 

  3. K.G. Nilsson, J. Karrholm, L. Carlsson, and T. Dalen, Hydroxyapatite Coatings Versus Cemented Fixation of the Tibial Component in Total Knee Arthroplasty: Prospective Randomized Comparison of Hydroxyapatite-Coated and Cemented Tibial Components with 5-Year Follow Up Using Radiostereometry, J. Arthroplasty, 1999, 14(1), p 9-20

    Article  CAS  Google Scholar 

  4. K.A. Khor, L. Fu, V.J.P. Lim, and P. Cheang, The Effects of ZrO2 on the Phase Compositions of Plasma Sprayed HA/YSZ Composite Coatings, Mater. Sci. Eng. A, 2000, 276, p 160-166

    Article  Google Scholar 

  5. X.Y. Liu and C.X. Ding, Study on Structure and Properties of Plasma Sprayed Wollastonite Coatings, J. Chin. Ceram. Soc., 2002, 30(1), p 20-25

    CAS  Google Scholar 

  6. X. Zhen, M. Huang, and C.X. Ding, Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings, Biomaterials, 2000, 21, p 841-849

    Article  Google Scholar 

  7. X.Y. Liu, C.X. Ding, and Z.Y. Wang, Apatite Formed on THE Surface of Plasma-Sprayed Wollastonite Coating Immersed in Simulated Body Fluid, Biomaterials, 2001, 22, p 2007-2012

    Article  CAS  Google Scholar 

  8. X.Y. Liu and C.X. Ding, Morphology of Apatite Formed on Surface of Wollastonite Coating Soaked in Simulate Body Fluid, Mater. Lett., 2002, 57, p 652-655

    Article  CAS  Google Scholar 

  9. W.C. Xue, X.Y. Liu, X.B. Zheng, and C.X. Ding, In Vivo Evaluation of Plasma-Sprayed Wollastonite Coating, Biomaterials, 2005, 26, p 3455-3460

    Article  CAS  Google Scholar 

  10. W.C. Xue, X.Y. Liu, X.B. Zheng, and C.X. Ding, Dissolution and Mineralization of Plasma-Sprayed Wollastonite Coatings WITH Different Crystallinity, Surf. Coat. Technol., 2005, 200, p 2420-2427

    Article  CAS  Google Scholar 

  11. X. Shen, H.S. Xu, S.Q. Liu, and J.S. Pang, Experimental Study on Biological Characteristics of the Wollastonite Coating for Implant Applications, J. Tissue Eng. Reconstr. Surg., 2009, 5(3), p 148-149

    Google Scholar 

  12. D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus-to-Hardness Ratios Using Knoop Indentation Measurements, J. Am. Ceram. Soc., 1982, 65, p 6 (C-175- 6)

    Article  Google Scholar 

  13. Z.F. Zhu, Corrosion Resistance and Applications of Non-Ferrous Metals, Chemical Industry Press, Beijing, 1995 (in Chinese)

    Google Scholar 

  14. R. Mcpherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95

    Article  CAS  Google Scholar 

  15. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  CAS  Google Scholar 

  16. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings, Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272, p 181-188

    Article  Google Scholar 

  17. M. Lv and J. Wu, XRD Analysis of Residual Stress on the Surface of Glass-Ceramic & Ceramic Composite Tile, Chin. Ceram., 2007, 43, p 21-23

    Google Scholar 

  18. C.J. Li, A. Ohmori, and R. Mcpherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004

    Article  CAS  Google Scholar 

  19. M. Hamidouche, N. Bouaouadja, H. Osmani, R. Torrecillias, and G. Fantozzi, Thermomechanical Behavior of Mullite–Zirconia Composite, J. Eur. Ceram. Soc., 1996, 16, p 441-445

    Article  CAS  Google Scholar 

  20. X. Liu, Study on Plasma Sprayed Bioactive Wollastonite Coatings, PhD Thesis, Shanghai Institute of ceramics, Chinese Academy of Sciences, Shanghai, 2002

  21. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma Sprayed Coating, Thin Solid Films, 1981, 83, p 297-310

    Article  CAS  Google Scholar 

  22. O. Sarikaya, Effect of the Substrate Temperature on Properties of Plasma Sprayed Al2O3 Coatings, Mater. Des., 2005, 26, p 53-57

    Article  CAS  Google Scholar 

  23. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184, p 13-23

    Article  CAS  Google Scholar 

  24. Y.Z. Xing, C.J. Li, C.X. Li, H.G. Long, and Y.X. Xie, Microstructure Development of Plasma-Sprayed Yttria-Stabilized Zirconia and Its Effect on Electrical Conductivity, Solid State Ionics, 2008, 179, p 1483-1485

    Article  CAS  Google Scholar 

  25. K.A. Gross, S. Saber-Samandari, and K.S. Heemann, Evaluation of Commercial Implants with Nano-Indentation Defines Future Development Needs for Hydroxyapatite Coatings, J. Biomed. Mater. Res. B, 2010, 93(1), p 1-8

    Google Scholar 

  26. L. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mat. Sci. Eng. A, 2003, 360, p 70-84

    Article  Google Scholar 

  27. S. Dru, E. Meillot, K. Wittmann-Teneze, R. Benoit, and M.L. Saboungi, Plasma Spraying of Lanthanum Silicate Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs), Surf. Coat. Technol., 2010, 205(4), p 1060-1064

    Article  CAS  Google Scholar 

  28. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093-2099

    Article  CAS  Google Scholar 

  29. S.W.K. Kweh, K.A. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Microstructure and Mechanical Properties, Biomaterials, 2000, 21, p 1223-1234

    Article  CAS  Google Scholar 

  30. R.C. Rossi, Prediction of the Elastic Moduli of Composites, J. Am. Ceram. Soc., 1968, 51(8), p 433-439

    Article  Google Scholar 

  31. F. Tang and M.S. Julie, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54(9), p 1587-1592

    Article  CAS  Google Scholar 

  32. Y. Chen, S.R. Bakshi, and A. Agarwal, Intersplat Friction Force and Splat Sliding in a Plasma-Sprayed Aluminum Alloy Coating During Nanoindentation and Microindentation, ACS Appl. Mater. Interfaces, 2009, 1(2), p 235-238

    Article  CAS  Google Scholar 

  33. H. Li, K.A. Khor, and P. Cheang, Young’s Modulus and Fracture Toughness Determination of High Velocity Oxy-Fuel-Sprayed Bioceramic Coatings, Surf. Coat. Technol., 2002, 155, p 21-32

    Article  CAS  Google Scholar 

  34. J. Ma, C.Z. Chen, and D.G. Wang, Influence of the Sintering Temperature on the Structural Feature and Bioactivity of Sol-Gel Derived SiO2-CaO-P2O5 Bioglass, Ceram. Inter., 2010, 36, p 1911-1916

    Article  CAS  Google Scholar 

  35. O. Peitl, E.D. Zanotto, and L.L. Hench, Highly Bioactive P2O5-Na2O-CaO-SiO2 Glass-Ceramics, J. Non-Cryst. Solids, 2001, 292, p 115-126

    Article  CAS  Google Scholar 

  36. C. Ohtsuki, T. Kokubo, and T. Yamamuro, Mechanism of Apatite Formation on CaO-SiO2-P2O5 Glasses in a Simulated Body Fluid, J. Non-Cryst. Solids, 1992, 143, p 84-92

    Article  CAS  Google Scholar 

  37. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, and T. Nakamura, Process of Formation of Bone-Like Apatite Layer on Silica Gel, J. Mater. Sci., 1993, 4, p 127-131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciates the support of National Natural Science Foundation (No. 50805048), Shanghai Natural Science Foundation (No. 08ZR1405700), Young Teacher Foundation of Education Ministry of China (No. 200802511008), Shanghai Rising-Star Program (10QA1401500), Fundamental Research Funds for the Central Universities, Shanghai Key Technologies R & D Program (09521101304) and the Shanghai leading academic discipline project (B503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weize Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Liang, J., Guo, X. et al. Mechanical Properties and Dissolution Behavior of Plasma Sprayed Wollastonite Coatings Deposited at Different Substrate Temperatures. J Therm Spray Tech 21, 496–504 (2012). https://doi.org/10.1007/s11666-011-9699-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9699-9

Key words

Navigation