Skip to main content

Advertisement

Log in

Effect of Heat Input on Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Wire Arc Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Wire Arc Additive Manufacturing (WAAM) as an emerging process to fabricate and repair big objects. In this investigation, thin-walled 316L Stainless steel parts were deposited utilizing the CMT-WAAM process. The effect of various heat input on changing the process parameters of Weld Current (WC), Travel Speed (TS) and Wire Feed Speed (WFS) on microstructure features and mechanical qualities were explored. The microstructure studies comprises the formation of both equiaxed and columnar grains. As TS values decreases, the coarse and equiaxed grains would increase in the various 316L deposited parts. EBSD analysis reveals the formation of strong (100) texture in the building direction of deposit parts. Micro-hardness studies demonstrates a hardness value increases from 210 to 240 HV under the effects of variation of TS and WFS values. In addition, the tensile properties indicates that the samples produced at TS: 4.1 m/min and WFS: 4.8 m/min possess the superior Ultimate Tensile Strength (UTS): 459.3 MPa, Yield Strength (YS): 277.5 MPa and Elongation (EL): 39%. Fracture morphology reveals the formation of dimples and micro-voids in the deposit samples and confirms the ductile mode fracture. WAAM process deposited at the TS: 4.1 m/min & WFS: 4.8 m/min exhibits the increase in both tensile and micro-hardness properties and good forming quality assist compared to other deposited samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Baufeld, E. Brandl, and O. Van Der Biest, Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition, J. Mater. Process. Technol., 2011, 211(6), p 1146–1158.

    Article  CAS  Google Scholar 

  2. M. Chaturvedi, E. Scutelnicu, C.C. Rusu, L.R. Mistodie, D. Mihailescu, and Vendan S. Arungalai, Wire Arc Additive Manufacturing: Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization, Metals (Basel)., 2021, 11(6), p 939.

    Article  CAS  Google Scholar 

  3. H. Zhang, J. Xu, and G. Wang, Fundamental Study on Plasma Deposition Manufacturing, Surf. Coat. Technol., 2003, 171(1–3), p 112–118.

    Article  CAS  Google Scholar 

  4. F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P.J. Withers, J. Meyer, and M. Hofmann, Residual Stress of as-Deposited and Rolled Wire+Arc Additive Manufacturing Ti-6Al-4V Components, Mater. Sci. Technol., 2016, 32(14), p 1439–1448. https://doi.org/10.1080/02670836.2016.1142704

    Article  CAS  Google Scholar 

  5. X. Duan, Q. Li, W. Xie, and X. Yang, Wire Arc Metal Additive Manufacturing Using Pulsed Arc Plasma (PAP-WAAM) for Effective Heat Management, J. Mater. Process. Technol., 2023, 311, p 117806. https://doi.org/10.1016/j.jmatprotec.2022.117806

    Article  CAS  Google Scholar 

  6. N. Rodriguez, L. Vázquez, I. Huarte, E. Arruti, I. Tabernero, and P. Alvarez, Wire and Arc Additive Manufacturing: A Comparison Between CMT and TopTIG Processes Applied to Stainless Steel, Weld World., 2018, 62(5), p 1083–1096.

    Article  CAS  Google Scholar 

  7. J. Ge, J. Lin, Y. Lei, and F. Hanguang, Location-Related Thermal History, Microstructure, and Mechanical Properties of Arc Additively Manufactured 2Cr13 Steel Using Cold Metal Transfer Welding, Mater. Sci. Eng. A, 2018, 715, p 144–153. https://doi.org/10.1016/j.msea.2017.12.076

    Article  CAS  Google Scholar 

  8. D. Jafari, T.H.J. Vaneker, and I. Gibson, Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts, Mater. Des., 2021, 1, p 202.

    Google Scholar 

  9. S. Singh, A.N. Jinoop, G.T.A.T. Kumar, I.A. Palani, C.P. Paul, and K.G. Prashanth, Effect of Interlayer Delay on the Microstructure and Mechanical Properties of Wire Arc Additive Manufactured Wall Structures, Materials, 2021, 14(15), p 4187. https://doi.org/10.3390/ma14154187

    Article  CAS  Google Scholar 

  10. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, and S.T. Newman, Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing, Addit. Manuf., 2018, 22, p 672–686. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  11. L. PalmeiraBelotti, J.A.W. van Dommelen, M.G.D. Geers, C. Goulas, W. Ya, and J.P.M. Hoefnagels, Microstructural Characterisation of Thick-Walled Wire Arc Additively Manufactured Stainless Steel, J. Mater. Process. Technol., 2022, 299, p 117373. https://doi.org/10.1016/j.jmatprotec.2021.117373

    Article  CAS  Google Scholar 

  12. Y. Fan, Y. Zhao, Y. Liu, S. Xie, C. Ge, X. Han, and H. Chen, Parameter Optimization and Mechanical Properties of Laser Cladding of 316L Stainless Steel Powder on G20Mn5QT Steel, Coatings, 2023, 13(3), p 481. https://doi.org/10.3390/coatings13030481

    Article  CAS  Google Scholar 

  13. X. Chen, X. Jia Li, B.H. Cheng, H. Wang, and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577. https://doi.org/10.1016/j.msea.2017.05.024

    Article  CAS  Google Scholar 

  14. P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu Rev Mater Res., 2016, 46(May), p 63–91.

    Article  CAS  Google Scholar 

  15. S. Katayama, T. Fujimoto, and A. Matsunawa, Correlation Among Solidification Process, Microstructure, Microsegregation and Solidification Cracking Susceptibility in Stainless Steel Weld Metals, Trans. JWRI (Japan. Weld Res. Inst.)., 1985, 14(1), p 123–138.

    CAS  Google Scholar 

  16. W. Wei, J. Xue, and P. Yao, A Comparative Study on Single- and Double-Arc Deposition Processes, Mater. Manuf. Process., 2020, 35(3), p 346–353. https://doi.org/10.1080/10426914.2020.1726947

    Article  CAS  Google Scholar 

  17. M. Sabzi and S.M. Dezfuli, Drastic Improvement in Mechanical Properties and Weldability of 316L Stainless Steel Weld Joints by Using Electromagnetic Vibration During GTAW Process, J. Manuf. Process., 2018, 33, p 74–85. https://doi.org/10.1016/j.jmapro.2018.05.002

    Article  Google Scholar 

  18. M. Sabzi, S.H. Mousavi Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823, p 141700. https://doi.org/10.1016/j.msea.2021.141700

    Article  CAS  Google Scholar 

  19. A. Rajesh Kannan, N. Siva Shanmugam, and S. ArungalaiVendan, Effect of Cold Metal Transfer Process Parameters on Microstructural Evolution and Mechanical Properties of AISI 316L Tailor Welded Blanks, Int. J. Adv. Manuf. Technol., 2019, 103(9–12), p 4265–4282. https://doi.org/10.1007/s00170-019-03856-2

    Article  Google Scholar 

  20. Marcelo Paredes, Vincent Grolleau and Tomasz Wierzbicki, On Ductile Fracture of 316L Stainless Steels at Room and Cryogenic Temperature Level: An Engineering Approach to Determine Material Parameters, Materialia, 2020, 10, p 100624. https://doi.org/10.1016/j.mtla.2020.100624s

    Article  CAS  Google Scholar 

  21. P.K. Farayibi, J.A. Folkes, and A.T. Clare, Laser Deposition of Ti-6Al-4V Wire with WC Powder for Functionally Graded Components, Mater. Manuf. Process., 2013, 28(5), p 514–518.

    Article  CAS  Google Scholar 

  22. L. Gardner, Metal Additive Manufacturing in Structural Engineering–Review, Advances, Opportunities and Outlook, Structures, 2023, 47, p 2178–2193. https://doi.org/10.1016/j.istruc.2022.12.039

    Article  Google Scholar 

  23. N.A. Rosli, M.R. Alkahari, M.F. Bin Abdollah, S. Maidin, F.R. Ramli, and S.G. Herawan, Review on Effect of Heat input for Wire Arc Additive Manufacturing Process, J. Mater. Res. Technol., 2021, 11, p 2127–2145. https://doi.org/10.1016/j.jmrt.2021.02.002

    Article  Google Scholar 

  24. J. Müller, M. Grabowski, C. Müller, J. Hensel, J. Unglaub, K. Thiele, H. Kloft, and K. Dilger, Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction, Metals, 2019, 9(7), p 725. https://doi.org/10.3390/met9070725

    Article  CAS  Google Scholar 

  25. H. Geng, J. Li, J. Xiong, and X. Lin, Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy, Sci. Technol. Weld Join., 2017, 22(6), p 472–83. https://doi.org/10.1080/13621718.2016.1259031

    Article  CAS  Google Scholar 

  26. D.M. Viano, N.U. Ahmed, and G.O. Schumann, Influence of Heat Input and Travel Speed on Microstructure and Mechanical Properties of Double Tandem Submerged Arc High Strength Low Alloy Steel Weldments, Sci. Technol. Weld Join., 2000, 5(1), p 26–34.

    Article  CAS  Google Scholar 

  27. A.S. Yildiz, K. Davut, B. Koc, and O. Yilmaz, Wire Arc Additive Manufacturing of High-Strength Low Alloy Steels: Study of Process Parameters and their Influence on the Bead Geometry and Mechanical Characteristics, Int. J. Adv. Manuf. Technol., 2020, 108(11–12), p 3391–3404. https://doi.org/10.1007/s00170-020-05482-9

    Article  Google Scholar 

  28. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M.S. Almeida, F. Wang et al., Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts, Comput. Mater. Sci., 2011, 50(12), p 3315–22. https://doi.org/10.1016/j.commatsci.2011.06.023

    Article  CAS  Google Scholar 

  29. C.V. Haden, G. Zeng, F.M. Carter, C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit. Manuf., 2017, 16, p 115–123. https://doi.org/10.1016/j.addma.2017.05.010

    Article  CAS  Google Scholar 

  30. A. Di Schino, M.G. Mecozzi, M. Barteri, and J.M. Kenny, Solidification Mode and Residual Ferrite in Low-Ni Austenitic Stainless Steels, J Mater Sci., 2000, 35(2), p 375–380.

    Article  Google Scholar 

  31. C.Y. Chou, N.H. Pettersson, A. Durga, F. Zhang, C. Oikonomou, A. Borgenstam et al., Influence of Solidification Structure on Austenite to Martensite Transformation in Additively Manufactured Hot-Work Tool Steels, Acta Mater., 2021, 215, p 117044. https://doi.org/10.1016/j.actamat.2021.117044

    Article  CAS  Google Scholar 

  32. M. Balbaa, S. Mekhiel, M. Elbestawi, and J. McIsaac, On Selective Laser Melting of Inconel 718: Densification, Surface Roughness, and Residual Stresses, Mater. Des., 2020, 193, p 108818. https://doi.org/10.1016/j.matdes.2020.108818

    Article  CAS  Google Scholar 

  33. F. Yan, W. Xiong, and E.J. Faierson, Grain Structure Control of Additively Manufactured Metallic Materials, Materials (Basel)., 2017, 10(11), p 1260.

    Article  Google Scholar 

  34. G. Chen, F. Li, J. Geng, P. Jing, and Z. Si, Identification, Generation of Autoclaved Aerated Concrete Pore Structure and Simulation of its Influence on Thermal Conductivity, Construct. Build. Mater., 2021, 294, p 123572. https://doi.org/10.1016/j.conbuildmat.2021.123572

    Article  Google Scholar 

  35. Tao Zhang, Huigui Li, Hai Gong, Wu. Yunxin, Xin Chen, and Xiaoyong Zhang, Study on Location-Related Thermal Cycles and Microstructure Variation of Additively Manufactured Inconel 718, J. Mater. Res. Technol., 2022, 18, p 3056–3072. https://doi.org/10.1016/j.jmrt.2022.03.178

    Article  CAS  Google Scholar 

  36. S. Gao, H. Zhiheng, P.S. Martial Duchamp, S.R. Krishnan, X. SravyaTekumalla and M.S. Song, Recrystallization-Based Grain Boundary Engineering of 316L Stainless Steel Produced Via Selective Laser Melting, Acta Mater., 2020, 200, p 366–377. https://doi.org/10.1016/j.actamat.2020.09.015

    Article  CAS  Google Scholar 

  37. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, and J.C. Feng, Materials Science & Engineering A Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding, Mater. Sci. Eng. A [Internet]., 2016, 676, p 395–405. https://doi.org/10.1016/j.msea.2016.09.015

    Article  CAS  Google Scholar 

  38. X. Wang, J.A. Muñiz-Lerma, M. AttarianShandiz, O. Sanchez-Mata, and M. Brochu, Crystallographic-Orientation-Dependent Tensile Behaviours of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A., 2019, 766, p 138395. https://doi.org/10.1016/j.msea.2019.138395

    Article  CAS  Google Scholar 

  39. A.R. Kannan, N.S. Shanmugam and G. Sreedhar, Studies on Corrosion Behavior of AISI 316L Cold Metal Transfer Weldments in Physiological Solutions, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., 2020, 234(6), p 644–656.

    Article  CAS  Google Scholar 

  40. T. Reza Tabrizi, M. Sabzi, S.H. Mousavi Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, Comparing the Effect of Continuous and Pulsed Current in the GTAW Process of AISI 316L Stainless Steel Welded Joint: Microstructural Evolution, Phase Equilibrium, Mechanical Properties and Fracture Mode, J. Mater. Res. Technol., 2021, 15, p 199–212. https://doi.org/10.1016/j.jmrt.2021.07.154

    Article  CAS  Google Scholar 

  41. V.C. Kumar, Process Parameters Influencing Melt Profile and Hardness of Pulsed Laser Treated Ti-6Al-4V, Surf. Coat. Technol., 2006, 201(6), p 3174–3180.

    Article  CAS  Google Scholar 

  42. Y. Xiong,A. G. Dharmawan, and Y. Tang. Computer-Aided Process Planning for Wire Arc Directed Energy Deposition. 2019; 1094–105.

  43. M. Li, T. Lu, J. Dai, X. Jia, X. Gu, and T. Dai, Microstructure and Mechanical Properties of 308L Stainless Steel Fabricated by Laminar Plasma Additive Manufacturing, Mater. Sci. Eng. A, 2020, 7, p 770.

    Google Scholar 

  44. B. Cong, Z. Qi, B. Qi, H. Sun, G. Zhao, and J. Ding, A Comparative Study of Additively Manufactured Thin Wall and Block Structure with Al-6.3%Cu Alloy Using Cold Metal Transfer Process, Appl. Sci., 2017, 7(3), p 275. https://doi.org/10.3390/app7030275

    Article  CAS  Google Scholar 

  45. S. Zhang, K. Liu, H. Chen, X. Xiao, Q. Wang, and F. Zhang, Effect of Increased N Content on Microstructure and Tensile Properties of Low-C V-Microalloyed Steels, Mater. Sci. Eng. A, 2016, 651, p 951–960. https://doi.org/10.1016/j.msea.2015.11.059

    Article  CAS  Google Scholar 

  46. S. Chuanchu, X. Chen, C. Gao, and Y. Wang, Effect of Heat Input on Microstructure and Mechanical Properties of Al-Mg Alloys Fabricated by WAAM, Appl. Surf. Sci., 2019, 486, p 431–440. https://doi.org/10.1016/j.apsusc.2019.04.255

    Article  CAS  Google Scholar 

  47. V. Laghi, Tensile Properties and Microstructural Features of 304L Austenitic Stainless Steel Produced by Wire-and-Arc Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2020, 106(9–10), p 3693–3705. https://doi.org/10.1007/s00170-019-04868-8s

    Article  Google Scholar 

  48. P.H. Huang and W.J. Huang, Preventing Shrinkage Defects in Investment Casting of SUS310 Stainless Steel Feather Keys, IOP Conf. Ser. Earth Environ. Sci., 2018, 186(2), p 012001. https://doi.org/10.1088/1755-1315/186/2/012001

    Article  Google Scholar 

  49. Table: Mechanical Properties of Wrought Stainless Steel * (All Properties Minimum Specified , Usually Flat Products ). 580.

  50. M. Sabzi and S.M. Dezfuli, Post Weld Heat Treatment of Hypereutectoid Hadfield Steel: Characterization and Control of Microstructure, Phase Equilibrium, Mechanical Properties and Fracture Mode of Welding Joint, J. Manuf. Process., 2018, 34, p 313–328.

    Article  Google Scholar 

  51. A. Kowalska-Mori, H. Mamiya, M. Ohnuma, J. Ilavsky, E.P. Gilbert, P. Bazarnik et al., Effect of Post Annealing on Microstructure and Mechanical Properties in Ni-free N-Containing ODS Steel, Mater. Charact., 2019, 153, p 339–347.

    Article  CAS  Google Scholar 

  52. S. Nambu, M. Michiuchi, J. Inoue, and T. Koseki, Effect of Interfacial Bonding Strength on Tensile Ductility of Multilayered Steel Composites, Compos. Sci. Technol., 2009, 69, p 1936.

    Article  CAS  Google Scholar 

  53. R.H. Cao, P. Cao, H. Lin, X. Fan, C. Zhang, and T. Liu, Crack Initiation, Propagation, and Failure Characteristics of Jointed Rock or Rock-Like Specimens: A Review, Adv. Civ. Eng., 2019, 17, p 19.

    Google Scholar 

  54. C. Li, G. Huimin, W. Wang, S. Wang, L. Ren, Z. Wang, Z. Ming, and Y. Zhai, Effect of Heat Input on Formability, Microstructure, and Properties of Al–7Si–0.6Mg Alloys Deposited by CMT-WAAM Process, Appl. Sci., 2019, 10(1), p 70. https://doi.org/10.3390/app10010070

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Gowthaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthaman, P.S., Jeyakumar, S. & Sarathchandra, D. Effect of Heat Input on Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Wire Arc Additive Manufacturing. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08312-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08312-7

Keywords

Navigation