Skip to main content
Log in

Direct Laser-Deposited IN718 Alloy: Effect of Heat Treatment Route on Microstructural Evolution and Mechanical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The laser-based additive manufacturing techniques are widely used for the refurbishment of worn-out components. The post-processing treatments on additive manufactured parts will improve the material properties and meet the functional requirements. In this study, the multilayered deposition of Inconel 718, a nickel-based alloy is performed using fiber-coupled diode laser with 4 kW maximum output and 5.5 mm spot diameter of direct laser deposition technique. The fabricated samples were subjected to two different stages of heat treatment namely (i) solution-treated and (ii) solution-treated plus direct aged, aiming to study both stages of microstructural and mechanical properties of the deposit. Microstructural observations are carried out using SEM with EDS and microhardness measurements through Vickers indentation method. Further, the influence of different stages of heat treatment on microstructure formation is investigated individually for all multilayered samples. The heat treatment results show that, at different stages, the morphology and hardness differ irrespective of the number of layers. In addition, solution treatment with direct aging reveals precipitation of γ′ (Ni3Ti) and γ′′ (Ni3Nb) phases in the Ni-γ matrix. Further, a 40 to 50% increment in microhardness was obtained and the two-stage heat treatment process has given better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8(3), p 215–243.

    Article  Google Scholar 

  2. J.C. Ion, Chapter 12-Cladding. In Laser Processing of Engineering Materials Ed. Butterworth-Heinemann: Oxford, 2005, 296–326.

  3. E. Toyserkani, A.K. Stephen, and F. Corbin, Laser Cladding, 1st ed. CRC Press, Boca Raton, 2004.

    Book  Google Scholar 

  4. J.R. Davis, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International: 2007.

  5. C.P. Paul and A.N. Jinoop, Additive Manufacturing, Mc Graw Hill, 2021.

    Google Scholar 

  6. M. Moradi, A. Hasani, Z. Pourmand, and J. Lawrence, Direct Laser Metal Deposition Additive Manufacturing of Inconel 718 Superalloy: Statistical Modelling and Optimization by Design of Experiments, Opt. Laser Technol., 2021, 144, p 107380. https://doi.org/10.1016/j.optlastec.2021.107380

    Article  CAS  Google Scholar 

  7. M. Moradi, Z. Pourmand, A. Hasani, M. Karami Moghadam, A.H. Sakhaei, M. Shafiee, and J. Lawrence, Direct Laser Metal Deposition (DLMD) Additive Manufacturing (AM) of Inconel 718 Superalloy: Elemental, Microstructural and Physical Properties Evaluation, Optik (Stuttg), 2022, 259, p 169018. https://doi.org/10.1016/j.ijleo.2022.169018

    Article  CAS  Google Scholar 

  8. R. Ghanavati, H. Naffakh-Moosavy, and M. Moradi, Additive Manufacturing of Thin-Walled SS316L-IN718 Functionally Graded Materials by Direct Laser Metal Deposition, J. Mater. Res. Technol., 2021, 15, p 2673–2685. https://doi.org/10.1016/j.jmrt.2021.09.061

    Article  CAS  Google Scholar 

  9. C. Gullipalli, N. Thawari, A. Chandak, and T. Gupta, Statistical Analysis of Clad Geometry in Direct Energy Deposition of Inconel 718 Single Tracks, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06736-1. (Springer US)

    Article  Google Scholar 

  10. C. Gullipalli, N. Thawari, P. Burad, and T.V.K. Gupta, Influence of Normalized Enthalpy on Inconel 718 Morphology in Direct Metal Deposition, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2022.

  11. C. Gullipalli, N. Thawari, P. Burad, and T.V.K. Gupta, Parametric Effect on the Microstructure of Direct Metal Deposited Inconel 718, Mater. Manuf. Process., 2021 https://doi.org/10.1080/10426914.2021.2006219. (Taylor & Francis)

    Article  Google Scholar 

  12. C. Gullipalli, P. Burad, N. Thawari, J. Bhatt, and T.V.K. Gupta, Microstructure Evolution in Direct Energy Deposited Multilayer Inconel 718, Arab. J. Sci. Eng., 2021 https://doi.org/10.1007/s13369-021-05899-8. (Springer Berlin Heidelberg)

    Article  Google Scholar 

  13. N. Thawari, C. Gullipalli, J.K. Katiyar, and T.V.K. Gupta, In-Process Monitoring of Distortion and Temperature in Multi-Layer Laser Cladding of Stellite 6 and Inconel 718 Alloys, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2022.

  14. N. Thawari, C. Gullipalli, J.K. Katiyar, and T.V.K. Gupta, Effect of Multi-Layer Laser Cladding of Stellite 6 and Inconel 718 Materials on Clad Geometry, Microstructure Evolution and Mechanical Properties, Mater. Today Commun., 2021, 28, p 102604. https://doi.org/10.1016/j.mtcomm.2021.102604. (Elsevier Ltd)

    Article  CAS  Google Scholar 

  15. N. Thawari, C. Gullipalli, H. Vanmore, and T.V.K. Gupta, In-Situ Monitoring and Modelling of Distortion in Multi-Layer Laser Cladding of Stellite 6: Parametric and Numerical Approach, Mater. Today Commun., 2022, 33, p 104751. https://doi.org/10.1016/j.mtcomm.2022.104751. (Elsevier Ltd)

    Article  CAS  Google Scholar 

  16. J.F. Radavich, The Physical Metallurgy of Cast and Wrought Alloy 718, Superalloy, 2012, 718, p 229–240.

    Google Scholar 

  17. L.J. Kumar and C.G.K. Nair, Laser Metal Deposition Repair Applications for Inconel 718 Alloy, Mater. Today Proc., 2017, 4(10), p 11068–11077. https://doi.org/10.1016/j.matpr.2017.08.068

    Article  Google Scholar 

  18. C. Radhakrishna, K.P. Rao, and S. Srinivas, Laves Phase in Superalloy 718 Weld Metals, J. Mater. Sci. Lett., 1995, 14(24), p 1810–1812.

    Article  CAS  Google Scholar 

  19. P. Burad, G. Chaitanya, N. Thawari, J. Bhatt, and T.V.K. Gupta, Characterization of Additive Manufactured Inconel 718 Alloy Using Laser Cladding, Key Eng. Mater., 2021, 882 KEM, p 3–10.

  20. H. Qi, M. Azer, and A. Ritter, Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured, n.d., 2.

  21. Y. Zhang, Z. Li, P. Nie, and Y. Wu, Effect of Cooling Rate on the Microstructure of Laser-Remelted INCONEL 718 Coating, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(12), p 5513–5521.

    Article  CAS  Google Scholar 

  22. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 639, p 647–655.

    Article  CAS  Google Scholar 

  23. E. Bassini, G. Marchese, and A. Aversa, Tailoring of the Microstructure of Laser Powder Bed Fused Inconel 718 Using Solution Annealing and Aging Treatments, Metals (Basel), 2021, 11(6), p 921.

    Article  CAS  Google Scholar 

  24. D. Deng, Additively Manufactured Inconel 718: Microstructures and Mechanical Properties, Linköping University Electronic Press, 2018.

    Book  Google Scholar 

  25. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, and M. Sennour, Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy, Mater. Sci. Eng. A, 2012, 534, p 446–451. https://doi.org/10.1016/j.msea.2011.11.092. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  26. A. Sadek, Optimization of the Post Heat Treatment of Additively Manufactured IN718, 31st ASM Heat Treat. Soc. Conf. Expo. Heat Treat 2021 - Ext. Abstr., 2021, 2(5), p 23–29.

  27. W. Huang, J. Yang, H. Yang, G. Jing, Z. Wang, and X. Zeng, Heat Treatment of Inconel 718 Produced by Selective Laser Melting: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2019, 750, p 98–107. https://doi.org/10.1016/j.msea.2019.02.046. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  28. E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, and M. Medraj, Effect of Homogenization and Solution Treatments Time on the Elevated-Temperature Mechanical Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion, Sci. Rep., 2021, 11(1), p 1–17. https://doi.org/10.1038/s41598-021-81618-5. (Nature Publishing Group UK)

    Article  CAS  Google Scholar 

  29. E.M. Fayed, D. Shahriari, M. Saadati, V. Brailovski, M. Jahazi, and M. Medraj, Influence of Homogenization and Solution Treatments Time on the Microstructure and Hardness of Inconel 718 Fabricated by Laser Powder Bed Fusion Process, Materials (Basel), 2020, 13(11), p 2574.

    Article  CAS  Google Scholar 

  30. D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, J. Yao, Y. Ji, Y. Ying, K. Xiao, X. Cheng, and X. Li, High-Throughput Fabrication of Nickel-Based Alloys with Different Nb Contents via a Dual-Feed Additive Manufacturing System: Effect of Nb Content on Microstructural and Mechanical Properties, J. Alloys Compd., 2019, 785, p 826–837. https://doi.org/10.1016/j.jallcom.2019.01.263. (Elsevier B.V)

    Article  CAS  Google Scholar 

  31. D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, G. Zhu, J. Yao, L. Wang, X. Cheng, and X. Li, Effect of TiC Content on the Mechanical and Corrosion Properties of Inconel 718 Alloy Fabricated by a High-Throughput Dual-Feed Laser Metal Deposition System, J. Alloys Compd., 2019, 803, p 637–648. https://doi.org/10.1016/j.jallcom.2019.06.317. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  32. S. Sui, C. Zhong, J. Chen, A. Gasser, W. Huang, and J.H. Schleifenbaum, Influence of Solution Heat Treatment on Microstructure and Tensile Properties of Inconel 718 Formed by High-Deposition-Rate Laser Metal Deposition, J. Alloys Compd., 2018, 740, p 389–399. https://doi.org/10.1016/j.jallcom.2017.11.004. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  33. S. Sui, J. Chen, L. Ma, W. Fan, H. Tan, F. Liu, and X. Lin, Microstructures and Stress Rupture Properties of Pulse Laser Repaired Inconel 718 Superalloy after Different Heat Treatments, J. Alloys Compd., 2019, 770, p 125–135. https://doi.org/10.1016/j.jallcom.2018.08.063. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  34. M. Calandri, D. Manfredi, F. Calignano, E.P. Ambrosio, S. Biamino, R. Lupoi, and D. Ugues, Solution Treatment Study of Inconel 718 Produced by SLM Additive Technique in View of the Oxidation Resistance, Adv. Eng. Mater., 2018, 20(11), p 1–16.

    Article  Google Scholar 

  35. W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting before and after Solution Heat Treatment, Mater. Sci. Eng. A, 2017, 689, p 220–232. https://doi.org/10.1016/j.msea.2017.02.062. (Elsevier B.V.)

    Article  CAS  Google Scholar 

  36. E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol. Lett., 2017, 65(1), p 1–18. (Springer US)

    Article  Google Scholar 

  37. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier, Gamma Double Prime Precipitation Kinetic in Alloy 718, Mater. Sci. Eng. A, 2008, 486(1–2), p 117–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. K. Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burad, P., Gullipalli, C., Thawari, N. et al. Direct Laser-Deposited IN718 Alloy: Effect of Heat Treatment Route on Microstructural Evolution and Mechanical Properties. J. of Materi Eng and Perform 32, 8961–8971 (2023). https://doi.org/10.1007/s11665-022-07744-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07744-x

Keywords

Navigation