Skip to main content

Advertisement

Log in

Process Optimization of Hexagonally Structured Polyethylene Terephthalate Glycol and Carbon Fiber Composite with Added Shell Walls

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work concentrates on incorporating shell wall in the planar type hexagonal lattice structure on the Polyethylene Terephthalate Glycol/ carbon fibre composite. The samples are prepared by using Fused Filament Fabrication method and various printing process parameters such as nozzle temperature, layer height, printing speed, and infill density. L9 orthogonal array was advanced for the process optimization of compressive strength and dimensional error responses. Taguchi and Analysis of Variance techniques are followed to predict the optimal printing condition and key influential printing process parameters for the compressive strength and dimensional error responses of the developed Polyethylene Terephthalate Glycol/ carbon fiber composite. The optimal combination for finding the higher compressive strength concerning the edges enclosed lattice structure incorporated PETG/CF polymer composite is nozzle temperature of 220 C, layer height of 0.1 mm, infill density of 100%, and printing speed of 20 mm/sec. For dimensional error responses, the experimental error of 0.2592 was measured for the optimized printing condition, and the error percentage was 4.88%. At lower infill density, the shell wall added hexagonal structured PETG/CF sample was compressed quasi-statically, buckled non-uniformly, and slid perpendicular to the loading direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.W. Lee, C.K. Chua, C.M. Cheah, L.H. Tan and C. Feng, Rapid Investment Casting: Direct and Indirect Approaches Via Fused Deposition Modelling, Int. J. Adv. Manuf. Technol., 2004, 23(1), p 93–101.

    Google Scholar 

  2. B.K. Nagesha, V. Dhinakaran, M.V. Shree, K.M. Kumar, D. Chalawadi and T. Sathish, Review on Characterization and Impacts of the Lattice Structure in Additive Manufacturing, Mater. Today: Proc., 2020, 21, p 916–919.

    Google Scholar 

  3. I. Zein, D.W. Hutmacher, K.C. Tan and S.H. Teoh, Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications, Biomaterials, 2002, 23(4), p 1169–1185.

    Article  CAS  Google Scholar 

  4. M. Algarni and S. Ghazali, Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters, Crystals, 2021, 11(8), p 995.

    Article  CAS  Google Scholar 

  5. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3(1), p 42–53.

    Article  CAS  Google Scholar 

  6. R. Rezaie, M. Badrossamay, A. Ghaie and H.J. Moosavi, Topology Optimization for Fused Deposition Modeling Process, Proc. CIRP., 2013, 6, p 521–526.

    Article  Google Scholar 

  7. M. Heidari-Rarani, N. Ezati, P. Sadeghi and M.R. Badrossamay, Optimization of FDM Process Parameters for Tensile Properties of Polylactic Acid Specimens Using Taguchi Design of Experiment Method, J. Thermoplast. Compos. Mater, 2020 https://doi.org/10.1177/0892705720964560

    Article  Google Scholar 

  8. O. Rahman, K.Z. Uddin, J. Muthulingam, G. Youssef, C. Shen and B. Koohbor, Density-Graded Cellular Solids: Mechanics, Fabrication, and Applications, Adv. Eng. Mater., 2022, 24(1), p 2100646.

    Article  CAS  Google Scholar 

  9. N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng and H. Zhang, Failure and Energy Absorption Characteristics of Four Lattice Structures Under Dynamic Loading, Mater. Des., 2019, 169, 107655.

    Article  Google Scholar 

  10. F.N. Habib, P. Iovenitti, S.H. Masood and M. Nikzad, Cell Geometry Effect On In-plane Energy Absorption of Periodic Honeycomb Structures, Int. J. Adv. Manuf. Technol., 2018, 94(5), p 2369–2380.

    Article  Google Scholar 

  11. S. Palaniyappan, D. Veeman, S. Narain Kumar, G.J. Surendhar and L. Natrayan, Effect of Printing Characteristics for the Incorporation of Hexagonal-Shaped Lattice Structure on the PLA Polymeric Material, J. Thermoplast. Compos. Mater., 2022 https://doi.org/10.1177/08927057221089832

    Article  Google Scholar 

  12. A. Joseph, V. Mahesh and V. Mahesh, Effect of Loading Rates On the In-Plane Compressive Properties of Additively Manufactured ABS and PLA-Based Hexagonal Honeycomb Structures, J. Thermoplast. Compos. Mater., 2021 https://doi.org/10.1177/08927057211051416

    Article  Google Scholar 

  13. K. Vishal, K. Rajkumar, M.S. Nitin and P. Sabarinathan, Kigelia Africana Fruit Biofibre Polysaccharide Extraction and Biofibre Development by Silane Chemical Treatment, Int. J. Biol. Macromol., 2022, 209, p 1248–1259.

    Article  CAS  Google Scholar 

  14. A. Gnanavelbabu, P. Saravanan, K. Rajkumar, P. Sabarinathan and S. Karthikeyan, Mechanical Strengthening Effect by Various Forms and Orientation of Glass Fibre Reinforced Isopthalic Polyester Polymer Composite, Mater. Today: Proc., 2018, 5(13), p 26850–26859.

    CAS  Google Scholar 

  15. V.C. Gavali, P.R. Kubade and H.B. Kulkarni, Mechanical and Thermo-Mechanical Properties of Carbon Fiber Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modeling Method, Mater. Today: Proc., 2020, 22, p 1786–1795.

    CAS  Google Scholar 

  16. R.T. Ferreira, I.C. Amatte, T.A. Dutra and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. B. Eng., 2017, 124, p 88–100.

    Article  CAS  Google Scholar 

  17. Y. Nakagawa, K.I. Mori and T. Maeno, 3D Printing of Carbon Fibre-Reinforced Plastic Parts, Int. J. Adv. Manuf. Technol., 2017, 91(5), p 2811–2817.

    Article  Google Scholar 

  18. K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, Augmenting Effect of Infill Density and Annealing on Mechanical Properties of PETG and CFPETG Composites Fabricated by FDM, Mater. Today: Proc., 2021, 45, p 2186–2191.

    Google Scholar 

  19. M. Mansour, K. Tsongas, D. Tzetzis and A. Antoniadis, Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers, Polym. Plast. Technol. Eng., 2018, 57(16), p 1715–1725.

    Article  CAS  Google Scholar 

  20. K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng and Y. Rao, Effects of Infill Characteristics and Strain Rate on the Deformation and Failure Properties of Additively Manufactured Polyamide-Based composite Structures, Result. Phys., 2020, 18, 103346.

    Article  Google Scholar 

  21. M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj and A. Rahaman, Effect of FDM Process Parameters on Mechanical Properties of 3D-Printed Carbon fibre–PLA Composite, Prog. Addit. Manuf., 2021, 6(1), p 63–69.

    Article  Google Scholar 

  22. N.A. Rosli, R. Hasan, M.R. Alkahari and T. Tokoroyama, Effect of Process Parameters on the Geometrical Quality of ABS Polymer Lattice Structure, InProc. SAKURA Symp. Mech. Sci. Eng, 2017, 2017, p 3–5.

    Google Scholar 

  23. G. Dong, G. Wijaya, Y. Tang and Y.F. Zhao, Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures, Addit. Manuf., 2018, 19, p 62–72.

    Google Scholar 

  24. Chohan JS, Kumar R, Yadav A, Chauhan P, Singh S, Sharma S, Li C, Dwivedi SP, 2022. Rajkumar S. Optimization of FDM Printing Process Parameters on Surface Finish, Thickness, and Outer Dimension with ABS Polymer Specimens Using Taguchi Orthogonal Array and Genetic Algorithms. Math. Probl. Eng

  25. A. Qattawi, B. Alrawi and A. Guzman, Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach, Procedia Manuf., 2017, 10, p 791–803.

    Article  Google Scholar 

  26. S. Guessasma, S. Belhabib and H. Nouri, Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol Using Fused Deposition Modelling, Polymers, 2019, 11(7), p 1220.

    Article  Google Scholar 

  27. S. Palaniyappan, D. Veeman, N.K. Sivakumar and L. Natrayan, Development and Optimization of Lattice Structure on the Walnut Shell Reinforced PLA Composite for the Tensile Strength and Dimensional Error Properties, Structures., 2022, 45, p 163–178.

    Article  Google Scholar 

  28. D. Veeman and S. Palaniyappan, Process Optimisation on the Compressive Strength Property for the 3D Printing of PLA/Almond Shell Composite, J. Thermoplast. Compos. Mater, 2022 https://doi.org/10.1177/08927057221092327

    Article  Google Scholar 

  29. N. Dixit and P.K. Jain, Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures, J. Mater. Eng. Perform, 2022, 31(7), p 5973–5982.

    Article  CAS  Google Scholar 

  30. A.F. Kichloo, A. Raina, M.I. Haq and M.S. Wani, Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation, J. Mater. Eng. Perform., 2022, 31(2), p 1021–1038.

    Article  CAS  Google Scholar 

  31. A.P. Valerga, M. Batista, J. Salguero and F. Girot, Influence of PLA Filament Conditions On Characteristics of FDM Parts, Materials., 2018, 11(8), p 1322.

    Article  Google Scholar 

  32. V. Taşdemir, Investigation of Dimensional Integrity and Surface Quality of Different Thin-Walled Geometric Parts Produced Via Fused Deposition Modeling 3D Printing, J. Mater. Eng. Perform., 2021, 30(5), p 3381–3387.

    Article  Google Scholar 

  33. A. Qattawi, Investigating the Effect of Fused Deposition Modeling Processing Parameters Using Taguchi Design of Experiment Method, J. Manuf. Process., 2018, 36, p 164–174.

    Article  Google Scholar 

  34. P. Sabarinathan, V.E. Annamalai, R. Balakrishnan and A.C. Kuriakose, Process Optimization for Recovery of Fiber Backing from Coated Abrasive Disks, Chem. Eng. Commun., 2021, 208(6), p 893–902.

    Article  CAS  Google Scholar 

  35. T. Maconachie, R. Tino, B. Lozanovski, M. Watson, A. Jones, C. Pandelidi, A. Alghamdi, A. Almalki, D. Downing, M. Brandt and M. Leary, The Compressive Behaviour of ABS Gyroid Lattice Structures Manufactured by Fused Deposition Modelling, Int. J. Adv. Manuf. Technol., 2020, 107(11), p 4449–4467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabarinathan Palaniyappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, M.D., Palaniyappan, S., Veeman, D. et al. Process Optimization of Hexagonally Structured Polyethylene Terephthalate Glycol and Carbon Fiber Composite with Added Shell Walls. J. of Materi Eng and Perform 32, 6434–6447 (2023). https://doi.org/10.1007/s11665-022-07572-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07572-z

Keywords

Navigation