Skip to main content
Log in

Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, PETG-based composite polymer using fused deposition modeling technique has been developed with carbon fiber (CF) as the reinforcement. The effect of the carbon fiber and the process parameters (layer thickness, infill pattern, infill percentage) on the tensile, flexural strength, and the tribological behavior of the developed composite polymer has been investigated. The study revealed that addition of carbon Fiber 20 wt.% as a reinforcement in PETG resulted in a composite which exhibited better tensile strength with maximum improvement of 114% for triangular pattern and minimum of 43.7% for full honeycomb pattern. The bending strength also enhanced in case of CFPETG with a maximum of 25% increase in flexural strength for full honeycomb. The tribological testing revealed substantial decrease in the COF with the addition of carbon fiber. A reduction of around 47.3% at low speeds (100 RPM) and around 44.79% reduction at high speeds (500 RPM) in COF was achieved in comparison to PETG. The fractographic analysis and worn surface analysis revealed distinct fracture modes and wear mechanisms for different composite samples suggesting the role of CF in improving the properties of the developed composites. The study revealed that the developed 3D printed composite could help to widen the scope of PETG as an engineering material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

3D:

Three Dimensional

ABS:

Acrylonitrile Butadiene Styrene

Al2O3 :

Aluminum Oxide

CaCO3 :

Calcium Carbonate

CAD:

Computer-Aided Designing

CF:

Carbon Fiber

CFPETG:

Carbon Fiber Polyethylene Terephthalate Glycol

CFPEKK:

Carbon Fiber Poly Ether Ketone

CNT:

Carbon Nano Tube

COF:

Coefficient of Friction

FDM:

Fused Deposition Modeling

GR:

Graphite flakes

MWCNT:

Multi-Walled Carbon Nano Tube

NASA:

National Aeronautics and Space Administration

PC-ABS:

Polycarbonate Acrylonitrile Butadiene Styrene

PEEK:

Polyether Ether Ketone

PETG:

Polyethylene Terephthalate Glycol

PLA:

Poly Lactic Acid

SiO2 :

Silica

SL:

Steriolithography

TGA:

Thermogravimetric analysis

TiO2 :

Titanium Oxide

USA:

United States of America

UV:

Ultraviolet

References

  1. M.I.U. Haq, S. Khuroo, A. Raina, S. Khajuria, M. Javaid, M.F.U. Haq et al., 3D Printing for Development of Medical Equipment Amidst Coronavirus (COVID-19) Pandemic—Review and Advancements, Res. Biomed. Eng. 2020, p. 1-11

  2. A. Chadha, M.I.U. Haq, A. Raina, R.R. Singh, N.B. Penumarti and M.S. Bishnoi, Effect of Fused Deposition Modelling Process Parameters on Mechanical Properties of 3D Printed Parts, World J. Eng. 2019

  3. Z.U. Baba, W.K. Shafi, M.I.U. Haq and A. Raina, Towards Sustainable Automobiles-Advancements and Challenges, Prog. Ind. Ecol. an Int. J., 2019, 13, p 315–331.

    Article  Google Scholar 

  4. D. 1. Yang, C., Cao, Y., Shi, C., Li, A Controlled Cold Deposition 3D Printing Method for PEEK Materials

  5. C. Cozmei and F. Caloian, Additive Manufacturing Flickering at the Beginning of Existence, Procedia Econ. Financ., 2012, 3, p 457–462.

    Article  Google Scholar 

  6. C.W.J. Lim, K.Q. Le, Q. Lu and C.H. Wong, An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries, IEEE Potentials, 2016, 35, p 18–22.

    Article  Google Scholar 

  7. L. Zhu, N. Li and P.R.N. Childs, Light-Weighting in Aerospace Component and System Design, Propuls. Power Res., 2018, 7, p 103–119.

    Article  Google Scholar 

  8. T.Q. Duong, E. Korolev and A. Inozemtcev, Selection of Reinforcing Fiber for High-strength Lightweight Concrete for 3D-Printing, in IOP Conference Series: Materials Science and Engineering, 2021 1030, p 12007

  9. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3, p 42–53.

    Article  CAS  Google Scholar 

  10. S.-H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257.

    Article  Google Scholar 

  11. J.S. Chohan, R. Singh, K.S. Boparai, R. Penna and F. Fraternali, Dimensional Accuracy Analysis of Coupled Fused Deposition Modeling and Vapour Smoothing Operations for Biomedical Applications, Compos. Part B Eng., 2017, 117, p 138–149.

    Article  CAS  Google Scholar 

  12. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf and I. Jasiuk, Experimental Trends in Polymer Nanocomposites—A Review, Mater. Sci. Eng. A, 2005, 393, p 1–11.

    Article  Google Scholar 

  13. A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31, p 287–295.

    Article  CAS  Google Scholar 

  14. J.N. Coleman, U. Khan and Y.K. Gunko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Adv. Mater., 2006, 18, p 689–706.

    Article  CAS  Google Scholar 

  15. A. Sharma, S. Kumar, B. Tripathi, M. Singh and Y.K. Vijay, Aligned CNT/Polymer Nanocomposite Membranes for Hydrogen Separation, Int. J. Hydrogen Energy, 2009, 34, p 3977–3982.

    Article  CAS  Google Scholar 

  16. J. Barrios-Muriel, F. Romero-Sánchez, F.J. Alonso-Sánchez and D. Rodriguez Salgado, Advances in Orthotic and Prosthetic Manufacturing: A Technology Review, Materials (Basel), 2020, 13, p 295.

    Article  CAS  Google Scholar 

  17. F. Klocke, A. Klink, D. Veselovac, D.K. Aspinwall, S.L. Soo, M. Schmidt et al., Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes, CIRP Ann., 2014, 63, p 703–726.

    Article  Google Scholar 

  18. J. Spale, V. Novotny, V. Mares and A.P. Weiß, 3D Printed Radial Impulse Cantilever Micro-Turboexpander for Preliminary Air Testing, in AIP Conference Proceedings, 2021, 2323, p 70002.

  19. U.R. Tuzkaya et al., A Single Side Priority Based GA Approach for 3D Printing Center Integration to Spare Part Supply Chain in Automotive Industry, Teh. Vjesn. 2021, 28, 836–844.

  20. C. De Vries, Volkswagen Autoeuropa: Maximizing production efficiency with 3D printed tools, jigs, and fixtures, Ultim. https//ultimaker.com/en/stories/43969-volkswagen-autoeuropa-maximizing-production-efficiency-with-3d-printed-tools-jigsand-fixtures (access 3/3/2019) (2017)

  21. A.F. Kichloo, R. Aziz, M.I.U. Haq and A. Raina, Mechanical and Physical Behaviour of 3D printed Polymer Nanocomposites-A Review, Int. J. Ind. Syst. Eng., 2021, 38, p 484–502.

    Google Scholar 

  22. A.D. Mazurchevici, D. Nedelcu, R. Popa et al., Additive Manufacturing of Composite Materials by FDM Technology: A Review, Indian J. Eng. Mater. Sci., 2021, 27, p 179–192.

    Google Scholar 

  23. ASTM, Standard Terminology for Additive manufacturing -General Principles-Terminology. ASTM ISO/ASTM52900-15.West Conshohocken, (2015)

  24. R. Aziz, M.I.U. Haq and A. Raina, Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA), Polym. Test., 2020, 85, p 106434.

    Article  CAS  Google Scholar 

  25. W.S.W. Harun, S. Sharif, M.H. Idris and K. Kadirgama, Characteristic Studies of Collapsibility of ABS Patterns Produced from FDM for Investment Casting, Mater. Res. Innov., 2009, 13, p 340–343.

    Article  CAS  Google Scholar 

  26. N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens using Fused Deposition Modelling (FDM), Mater. Technol. 2020, p 1-14.

  27. N. Naveed, Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts, Polymers (Basel)., 2021, 13, p 1487.

    Article  CAS  Google Scholar 

  28. X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.

    Article  CAS  Google Scholar 

  29. R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, Industrial Applications of Natural Fiber Reinforced Polymer Composites - Challenges and Opportunities, J. Sustain. Eng. 2018

  30. A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat and R.C. Advincula, High Performance Polymer Nanocomposites for Additive Manufacturing Applications, React. Funct. Polym., 2016, 103, p 141–155.

    Article  Google Scholar 

  31. W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short Fiber Reinforced Composites for Fused Deposition Modeling, Mater. Sci. Eng. A, 2001, 301, p 125–130.

    Article  Google Scholar 

  32. S. Dul, L. Fambri and A. Pegoretti, Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites, Nanomaterials, 2018, 8, p 49.

    Article  Google Scholar 

  33. V.C. Gavali, P.R. Kubade and H.B. Kulkarni, Mechanical and Thermomechanical Properties of Carbon Fibre Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modelling (FDM) Method: A Review, Int. J. Mech. Prod. Eng. Res. Dev., 2018, 8, p 1161–1168.

    Google Scholar 

  34. R.T.L. Ferreira, I.C. Amatte, T.A. Dutra and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. Part B Eng., 2017, 124, p 88–100.

    Article  CAS  Google Scholar 

  35. K. Prashantha and F. Roger, Multifunctional Properties of 3D Printed Poly (Lactic Acid)/Graphene Nanocomposites by Fused Deposition Modeling, J. Macromol. Sci. Part A, 2017, 54, p 24–29.

    Article  CAS  Google Scholar 

  36. B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato and L. Incarnato, Influence of 3D Printing Parameters on the Properties of PLA/Clay Nanocomposites, AIP Conf. Proc., 1981, 2018, p 20064.

    Google Scholar 

  37. Y. Nakagawa, K. Mori and T. Maeno, 3D Printing of Carbon Fibre-Reinforced Plastic Parts, Int. J. Adv. Manuf. Technol., 2017, 91, p 2811–2817.

    Article  Google Scholar 

  38. C. Yang, X. Tian, T. Liu, Y. Cao and D. Li, 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance, Rapid Prototyp. J., 2017, 23, p 209–215.

    Article  Google Scholar 

  39. I. Ferreira, D. Vale, M. Machado and J. Lino, Additive Manufacturing of Polyethylene Terephthalate Glycol/Carbon Fiber Composites: An Experimental Study from Filament to Printed Parts, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, p. 1464420718795197.

  40. S. Berretta, R. Davies, Y.T. Shyng, Y. Wang and O. Ghita, Fused Deposition Modelling of High Temperature Polymers: Exploring CNT PEEK Composites, Polym. Test., 2017, 63, p 251–262.

    Article  CAS  Google Scholar 

  41. R. Singh, N. Singh, A. Amendola and F. Fraternali, On the Wear Properties of Nylon6-SiC-Al2O3 Based Fused Deposition Modelling Feed Stock Filament, Compos. Part B Eng., 2017, 119, p 125–131.

    Article  CAS  Google Scholar 

  42. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, A Parametric Investigation of the Friction Performance of PC-ABS Parts Processed by FDM Additive Manufacturing Process, Polym. Adv. Technol., 2017, 28, p 1911–1918.

    Article  CAS  Google Scholar 

  43. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Analysis of Wear Behavior of Additively Manufactured PC-ABS Parts, Mater. Lett., 2018, 230, p 261–265.

    Article  CAS  Google Scholar 

  44. K.S. Boparai and R. Singh, Investigations for Enhancing Wear Properties of Rapid Tooling by Reinforcement of Nanoscale Fillers for Grinding Applications, J. Micro Nano-Manufacturing, 2018, 6, p 21004.

    Article  Google Scholar 

  45. J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl and A. Agarwal, Integration of Graphene in Poly (Lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierarchical Nanocomposites, Polym. Compos., 2018, 39, p 3877–3888.

    Article  CAS  Google Scholar 

  46. E.G. Ertane, A. Dorner-Reisel, O. Baran, T. Welzel, V. Matner and S. Svoboda, Processing and Wear Behaviour of 3D Printed PLA Reinforced with Biogenic Carbon, Adv. Tribol. 2018, 2018

  47. K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng and Y. Rao, Effects of Infill Characteristics and Strain Rate on the Deformation and Failure Properties of Additively Manufactured Polyamide-Based Composite Structures, Results Phys., 2020, 18, p 103346.

    Article  Google Scholar 

  48. M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj and A. Rahaman, Effect of FDM Process Parameters on Mechanical Properties of 3D-Printed Carbon Fibre–PLA Composite, Prog. Addit. Manuf., 2021, 6, p 63–69.

    Article  Google Scholar 

  49. M. Nachtane, M. Tarfaoui, Y. Ledoux, S. Khammassi, E. Leneveu and J. Pelleter, Experimental Investigation on the Dynamic Behavior of 3D Printed CF-PEKK Composite Under Cyclic Uniaxial Compression, Compos. Struct., 2020, 247, p 112474.

    Article  Google Scholar 

  50. K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, Augmenting Effect of Infill Density and Annealing on Mechanical Properties of PETG and CFPETG Composites Fabricated by FDM, Mater. Today Proc., 2021, 45, p 2186–2191.

    Article  Google Scholar 

  51. K.A.M. Menderes, A. Ipekçi and H. Saruhan, Investigation of 3d Printing Filling Structures Effect on Mechanical Properties and Surface Roughness of PET-G Material Products, Gaziosmanpacsa Bilim. Aracstirma Derg., 2017, 6, p 114–121.

    Google Scholar 

  52. U.K. uz Zaman, E. Boesch, A. Siadat, M. Rivette and A.A. Baqai, Impact of Fused Deposition Modeling (FDM) Process Parameters on Strength of Built Parts Using Taguchi—s Design of Experiments, Int. J. Adv. Manuf. Technol. 2018, p. 1-12.

  53. M. Fernandez-Vicente, W. Calle, S. Ferrandiz and A. Conejero, Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print Addit. Manuf., 2016, 3, p 183–192.

    Article  Google Scholar 

  54. S. Tandon, R. Kacker and K.G. Sudhakar, Experimental Investigation on Tensile Properties of the Polymer and Composite Specimens Printed in a Triangular Pattern, J. Manuf. Process., 2021, 68, p 706–715.

    Article  Google Scholar 

  55. H. Li, T. Wang, J. Sun and Z. Yu, The Effect of Process Parameters in Fused Deposition Modelling on Bonding Degree and Mechanical Properties, Rapid Prototyp. J., 2018, 24, p 80–92.

    Article  Google Scholar 

  56. C. Alvarez, L. Kenny, C. Lagos, F. Rodrigo and M. Aizpun, Investigating the Influence of Infill Percentage on the Mechanical Properties of Fused Deposition Modelled ABS Parts, Ing. Investig., 2016, 36, p 110–116.

    Google Scholar 

  57. S. Hwang, E.I. Reyes, K. Moon, R.C. Rumpf and N.S. Kim, Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater., 2015, 44, p 771–777.

    Article  CAS  Google Scholar 

  58. A. Lanzotti, M. Grasso, G. Staiano and M. Martorelli, The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer, Rapid Prototyp. J., 2015, 21, p 604–617.

    Article  Google Scholar 

  59. T. Hofstätter, I.W. Gutmann, T. Koch, D.B. Pedersen, G. Tosello, G. Heinz et al., Distribution and Orientation of Carbon Fibers in Polylactic, Proc. ASPE Summer Top. Meet. 2016

  60. S. Meng, H. He, Y. Jia, P. Yu, B. Huang and J. Chen, Effect of Nanoparticles on the Mechanical Properties of Acrylonitrile--Butadiene--Styrene Specimens Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci. 2017, 134

  61. C. Giovedi, L.D.B. Machado, M. Augusto, E.S. Pino and P. Radino, Evaluation of the Mechanical Properties of Carbon Fiber after Electron Beam Irradiation, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2005, 236, p 526–530.

    Article  CAS  Google Scholar 

  62. A.K. Sood, V. Chaturvedi, S. Datta and S.S. Mahapatra, Optimization of Process Parameters in Fused Deposition Modeling Using Weighted Principal Component Analysis, J. Adv. Manuf. Syst., 2011, 10, p 241–259.

    Article  Google Scholar 

  63. X. Yao, C. Luan, D. Zhang, L. Lan and J. Fu, Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring, Mater. Des., 2017, 114, p 424–432.

    Article  CAS  Google Scholar 

  64. O. Luzanin, V. Guduric, I. Ristic and S. Muhic, Investigating Impact of Five Build Parameters on the Maximum Flexural Force in FDM Specimens–a Definitive Screening Design Approach, Rapid Prototyp. J., 2017, 23, p 1088–1098.

    Article  Google Scholar 

  65. N. Li, Y. Li and S. Liu, Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing, J. Mater. Process. Technol., 2016, 238, p 218–225.

    Article  CAS  Google Scholar 

  66. G. Wypych, The Effect of Fillers on the Mechanical Properties of Filled Materials, Handbook of Fillers, 2016

  67. M.I.U. Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018

  68. Wear principles and resistance of materials. Beijing: Tsinghua University Press, 1993

  69. R. Reinicke, F. Haupert and K. Friedrich, On the Tribological Behaviour of Selected, Injection Moulded Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 763–771.

    Article  Google Scholar 

  70. M.I. Ul Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018, 5, p 066544.

    Article  Google Scholar 

  71. M.I. Ul Haq, A. Raina, S. Mohan, A. Anand and M.F. Bin Abdollah, Potential of AA7075 as a Tribological Material for Industrial Applications-A Review, (2021)

  72. H.K. Garg and R. Singh, Comparison of Wear Behavior of ABS and Nylon6—Fe Powder Composite Parts Prepared with Fused Deposition Modelling, J. Cent. South Univ., 2015, 22, p 3705–3711.

    Article  CAS  Google Scholar 

  73. K.C. Ludema and D. Tabor, The Friction and Visco-Elastic Properties of Polymeric Solids, Wear, 1966, 9, p 329–348.

    Article  CAS  Google Scholar 

  74. M.I. Ul Haq and A. Anand, Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed, Silicon, 2018

  75. T.S. Barrett, G.W. Stachowiak and A.W. Batchelor, Effect of Roughness and Sliding Speed on the Wear and Friction of Ultra-High Molecular Weight Polyethylene, Wear, 1992, 153, p 331–350.

    Article  CAS  Google Scholar 

  76. E. Santner and H. Czichos, Tribology of Polymers, Tribol. Int., 1989, 22, p 103–109.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AFK involved in methodology and writing original draft. AR participated in supervision, methodology, writing, review, and editing. MIUH involved in conceptualization, supervision, methodology, writing, review, and editing. MSW participated in methodology, writing, review, and editing

Corresponding author

Correspondence to Mir Irfan Ul Haq.

Ethics declarations

Conflict of interest

No conflicts of interests between the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kichloo, A.F., Raina, A., Haq, M.I.U. et al. Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation. J. of Materi Eng and Perform 31, 1021–1038 (2022). https://doi.org/10.1007/s11665-021-06262-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06262-6

Keywords

Navigation