Skip to main content
Log in

Antibacterial Cu-Doped HA/TiO2 Bioactive Ceramic Composite Coating with Enhanced Adhesion on Pure Ti

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu-doped hydroxyapatite (HA)/TiO2 (CuHA/TiO2) bioactive ceramic composite coatings were prepared on Ti surfaces using an electrochemical method to enhance their adhesion and antibacterial properties. The obtained coatings were characterized by scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, while their adhesion was measured using a scratch test. The maximum adhesion between the TiO2 layer and the substrate was 39.8 ± 2.6 N at an anodizing voltage of 180 V. Subsequently, the CuHA coatings were successfully deposited on the TiO2 layers and grown outward along TiO2 pores (during this process, Cu atoms are doped into the HA structure in the form of Cu2+ ions). The CuHA adhesion to the TiO2 layer was 26.3 ± 1.9 N, indicating that the TiO2 interlayer significantly enhanced the bonding of CuHA to the substrate. Furthermore, the fabricated CuHA/TiO2 coatings produced a strong antibacterial effect on Escherichia coli and Staphylococcus aureus species, exhibited high biocompatibility, and promoted the proliferation of MC3T3-E1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, Y.A. Qing, L.G. Xiao, Y.G. Wang, X.F. Bao, Y.G. Qin, J.Y. Zhang, and K. Zhang, Design of New-Type F-FLC Artificial Joint Coatings via Fluorine Incorporation and Fullerene-Like Structure Construction, Surf. Coat. Tech., 2020, 385, p 125419.

    CAS  Google Scholar 

  2. M. Pettersson, T. Berlind, S. Schmidt, S. Jacobson, L. Hultman, C. Persson, and H. Engqvist, Structure and Composition of Silicon Nitride and Silicon Carbon Nitride Coatings for Joint Replacements, Surf. Coat. Tech., 2013, 235, p 827–834.

    CAS  Google Scholar 

  3. M. Cuervas-Mons, E. León-Román, C. Solans, Á. Martínez-Ayora, and J. Vaquero, Retrograde Tibial Nail and Trabecular Titanium Spacer Block for the Treatment of Missing Talus: a Rare Case ReporT, J. Foot Ankle Surg., 2020, 59(1), p 184–189.

    Google Scholar 

  4. L. Korhonen, M. Perhomaa, A. Kyrö, T. Pokka, W. Serlo, J. Merikanto, and J.-J. Sinikumpu, Intramedullary Nailing of Forearm Shaft Fractures By Biodegradable Compared With Titanium Nails: Results of a Prospective Randomized Trial in Children with at Least 2 Years of Follow-Up, Biomaterials, 2018, 185, p 383–392.

    CAS  Google Scholar 

  5. A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, and A. Abarrateg, Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants, ACS Biomater. Sci. Eng., 2017, 3(7), p 1245–1261.

    CAS  Google Scholar 

  6. N.A. Hodges, E.M. Sussman, and J.P. Stegemann, Aseptic and Septic Prosthetic Joint Loosening: Impact of Biomaterial Wear on Immune Cell Function, Inflammation, and Infection, Biomaterials, 2021, 278, p 121127.

    CAS  Google Scholar 

  7. L. Fathyunes, J. Khalil-Allafi, S.O.R. Sheykholeslami, and M. Moosavifar, Biocompatibility Assessment of Graphene Oxide-Hydroxyapatite Coating Applied on TiO2 Nanotubes by Ultrasound-Assisted Pulse Electrodeposition, Mat. Sci. Eng. C. Mater., 2018, 87, p 10–21.

    CAS  Google Scholar 

  8. N. Karimi, M. Kharaziha, and K. Raeissi, Electrophoretic Deposition of Chitosan Reinforced Graphene Oxide-Hydroxyapatite on the Anodized Titanium to Improve Biological and Electrochemical Characteristics, Mat. Sci. Eng. C. Mater., 2019, 98, p 140–152.

    CAS  Google Scholar 

  9. D.L. Qiu, L.J. Yang, Y.S. Yin, and A.P. Wang, Preparation and Characterization of Hydroxyapatite/Titania Composite Coating on NiTi Alloy by Electrochemical Deposition, Surf. Coat. Tech., 2011, 205(10), p 3280–3284.

    CAS  Google Scholar 

  10. Z.J. Wu, L.P. He, and Z.Z. Chen, Composite Biocoating of Hydroxyapatite/Al2O3 on Titanium Formed by Al Anodization and Electrodeposition, Mater. Lett., 2007, 61(14–15), p 2952–2955.

    CAS  Google Scholar 

  11. L. Suo, N. Jiang, Y. Wang, P.Y. Wang, J.Y. Chen, X.B. Pei, J. Wang, and Q.B. Wan, The Enhancement of Osseointegration Using a Graphene Oxide/Chitosan/Hydroxyapatite Composite Coating on Titanium Fabricated By Electrophoretic Deposition, J. Biomed. Mater. Res. B, 2019, 107, p 635–645.

    CAS  Google Scholar 

  12. Y.H. Duan, S. Zhu, F. Gao, J.Y. Zhu, M. Li, J. Ma, and Q.S. Zhu, The Effect of Adhesive Strength of Hydroxyapatite Coating on the Stability of Hydroxyapatite-Coated Prostheses in Vivo at the Early Stage of Implantation, Arch. Med. Sci., 2012, 8, p 199–208.

    CAS  Google Scholar 

  13. M. Hadidi, A. Bigham, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, S. Rahmati, Z.M. Alizadeh, V. Nasirian, and M. Rafienia, Electrophoretic-Deposited Hydroxyapatite-Copper Nanocomposite as an Antibacterial Coating for Biomedical Applications, Surf. Coat. Tech., 2017, 321, p 171–179. (in English)

    CAS  Google Scholar 

  14. Y. Say, B. Aksakal, and B. Dikici, Effect of Hydroxyapatite/SiO2 Hybride Coatings on Surface Morphology and Corrosion Resistance of REX-734 Alloy, Ceram. Int., 2016, 42(8), p 10151–10158.

    CAS  Google Scholar 

  15. O. Yigit, N. Ozdemir, B. Dikici, and M. Kaseem, Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys via Plasma Electrolytic Oxidation (PEO), Molecules, 2021, 26(13), p 3903.

    CAS  Google Scholar 

  16. O. Yigit, B. Dikici, T.C. Senocak, and N. Ozdemir, One-Step Synthesis of Nano-Hydroxyapatite/Graphene Nanosheet Hybrid Coatings on Ti6Al4V Alloys by Hydrothermal Method and their in-vitro Corrosion Responses, Surf. Coat. Tech., 2020, 394, p 125858.

    CAS  Google Scholar 

  17. Y. Wu, Q.Q. Li, B.Y. Xu, H.Y. Fu, and Y. Li, Nano-Hydroxyapatite Coated TiO2 Nanotubes on Ti-19Zr-10Nb-1Fe Alloy Promotes Osteogenesis in vitro, Colloids. Surf. B, 2021, 207, p 112019.

    CAS  Google Scholar 

  18. X.J. Long, L. Duan, W.J. Weng, K. Cheng, D.P. Wang, and H.W. Ouyang, Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant, Colloids Surf. B, 2021, 207, p 111996.

    CAS  Google Scholar 

  19. X. Cui, H.-M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, and T. Nakamura, Preparation of Bioactive Titania Films on Titanium Metal Via Anodic Oxidation, Dent. Mater., 2009, 25(1), p 80–86.

    CAS  Google Scholar 

  20. S. Khanmohammadi, M. Ojaghi-Ilkhchi, and M. Farrokhi-Rad, Development of Bioglass Coating Reinforced With Hydroxyapatite Whiskers on TiO2 Nanotubes via Electrophoretic Deposition, Ceram. Int., 2021, 47(1), p 1333–1343.

    CAS  Google Scholar 

  21. B. Feng, X.J. Chu, J.M. Chen, J.X. Wang, X. Lu, and J. Weng, Hydroxyapatite Coating on Titanium Surface with Titania Nanotube Layer and its Bond Strength to Substrate, J. Porous. Mater., 2010, 17(4), p 453–458.

    CAS  Google Scholar 

  22. B. Dikici, M. Niinomi, M. Topuz, S.G. Koc, and M. Nakai, Synthesis of Biphasic Calcium Phosphate (BCP) Coatings on β-type Titanium Alloys Reinforced with Rutile-TiO2 Compounds: Adhesion Resistance And In-Vitro Corrosion, J. sol-gel Sci. Technol., 2018, 87, p 713–724.

    CAS  Google Scholar 

  23. Y.-T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition, Biomaterials, 2002, 23(2), p 491–501.

    CAS  Google Scholar 

  24. Y.-T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, The Electrochemical Oxide Growth Behaviour on Titanium in Acid and Alkaline Electrolytes, Med. Eng. Phys., 2001, 23(5), p 329–346.

    CAS  Google Scholar 

  25. X.L. Zhu, K.-H. Kim, and Y. Jeong, Anodic Oxide Films Containing Ca and P of Titanium Biomaterial, Biomaterials, 2001, 22(16), p 2199–2206.

    CAS  Google Scholar 

  26. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by Thermal and Anodic Oxidation and by Sol-Gel Coating Techniques and Their Characterization, J. Biomed. Mater. Res., 2002, 59(1), p 18–28.

    CAS  Google Scholar 

  27. R. Rohanizadeh, M. Al-Sadeq, and R.Z. Legeros, Preparation of Different Forms of Titanium Oxide on Titanium Surface: Effects on Apatite Deposition, J. Biomed. Mater. Res. A, 2004, 71(2), p 343–352.

    CAS  Google Scholar 

  28. Q. Bi, X. Song, Y.J. Chen, Y.P. Zheng, P. Yin, and T. Lei, Zn-HA/Bi-HA Biphasic Coatings on Titanium: Fabrication, Characterization, Antibacterial and Biological Activity, Colloids. Surf. B, 2020, 189, p 110813.

    CAS  Google Scholar 

  29. A. Rodríguez-Contreras, D. Torres, B. Rafik, M. Ortiz-Hernandez, M.P. Ginebra, J.A. Calero, J.M. Manero, and E. Ruperez, Bioactivity and Antibacterial Properties of Calcium- and Silver-Doped Coatings on 3D Printed Titanium Scaffolds, Surf. Coat. Tech., 2021, 421, p 127476.

    Google Scholar 

  30. H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, and C. Ding, Antibacterial Activity and Increased Bone Marrow Stem Cell Functions of Zn-Incorporated TiO2 Coatings on Titanium, Acta. Biomater., 2012, 8(2), p 904–915.

    CAS  Google Scholar 

  31. E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park, Silver Nanoparticles Induce Cytotoxicity by a Trojan-Horse type Mechanism, Toxicol. In Vitro., 2010, 24(3), p 872–878.

    CAS  Google Scholar 

  32. M. Thukkaram, M. Vaidulych, O. Kylián, P. Rigole, S. Aliakbarshirazi, M. Asadian, A. Nikiforov, H. Biederman, T. Coenye, G.D. Laing, R. Morent, A.V. Tongel, L.D. Wilde, K. Verbeken, and N.D. Geyter, Biological Activity and Antimicrobial Property of Cu/a-C: H Nanocomposites and Nanolayered Coatings on Titanium Substrates, Mat. Sci. Eng. C–Mater., 2021, 119, p 111513.

    CAS  Google Scholar 

  33. H.B. Wu, X.Y. Zhang, Z.H. Geng, Y. Yin, R.Q. Hang, X.B. Huang, X.H. Yao, and B. Tang, Preparation, Antibacterial Effects and Corrosion Resistant of Porous Cu-TiO2 Coatings, Appl. Surf. Sci., 2014, 308, p 43–49.

    CAS  Google Scholar 

  34. A. Hoppe, N.S. Güldal, and A.R. Boccaccini, A Review Of The Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics, Biomaterials, 2011, 32(11), p 2757–2774.

    CAS  Google Scholar 

  35. I. Burghardt, F. Lüthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.-G. Neumann, and J. Rychly, A Dual Function of Copper in Designing Regenerative Implants, Biomaterials, 2015, 44, p 36–44.

    CAS  Google Scholar 

  36. N.J. Lakhkar, I.-H. Lee, H.-W. Kim, V. Salih, I.B. Wall, and J.C. Knowles, Bone Formation Controlled by Biologically Relevant Inorganic Ions: Role and Controlled Delivery from Phosphate-Based Glasses, Adv. Drug. Deliv. Rev., 2013, 65(4), p 405–420.

    CAS  Google Scholar 

  37. Q. Li, J.S. Yang, J.J. Li, R. Zhang, M. Nakai, M. Niinomi, and T. Nakano, Antibacterial Cu-Doped Calcium Phosphate Coating on pure Titanium, Mater. Trans., 2021, 62(7), p 1052–1055. (in English)

    CAS  Google Scholar 

  38. F. Hilario, V. Roche, R.P. Nogueira, and A.M.J. Junior, Influence of Morphology and Crystalline Structure of TiO2 Nanotubes on Their Electrochemical Properties and Apatite-Forming Ability, Electrochim. Acta., 2017, 245, p 337–349.

    CAS  Google Scholar 

  39. B.C. Yang, M. Uchida, H.-M. Kim, X.D. Zhang, and T. Kokubo, Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment, Biomaterials, 2004, 25(6), p 1003–1010.

    CAS  Google Scholar 

  40. S. Ban, S. Maruno, A. Harada, M. Hattori, K. Narita, and J. Hasegawa, Effect of temperature on Morphology of Electrochemically-Deposited Calcium Phosphates, Dent. Mater. J., 1996, 15(1), p 31–38.

    CAS  Google Scholar 

  41. L. Ling, T.T. Li, M.C. Lin, Q. Jiang, H.T. Ren, C.W. Lou, and J.H. Lin, Effect of hydrogen Peroxide Concentration on the Nanostructure of Hydroxyapatite Coatings via Ultrasonic-Assisted Electrodeposition, Mater. Lett., 2020, 261, p 126989.

    CAS  Google Scholar 

  42. M.C. Biesinger, Advanced Analysis of Copper X-Ray Photoelectron Spectra, Surf. Interface. Anal., 2017, 49(13), p 1325–1334.

    CAS  Google Scholar 

  43. H. Pelletier, A. Carrado, J. Faerber, and I.N. Mihailescu, Microstructure and Mechanical Characteristics of Hydroxyapatite Coatings on Ti/TiN/Si Substrates Synthesized by Pulsed Laser Deposition, Appl. Phs. A, 2011, 102(3), p 629–640.

    CAS  Google Scholar 

  44. R.A. Surmenev, I.Y. Grubova, E. Neyts, A.D. Teresov, N.N. Koval, M. Epple, A.I. Tyurin, V.F. Pichugin, M.V. Chaikina, and M.A. Surmeneva, Ab Initio Calculations and a Scratch Test Study of RF-Magnetron Sputter Deposited Hydroxyapatite and Silicon-Containing Hydroxyapatite Coatings, Surf. Interfaces., 2020, 21, p 100727.

    CAS  Google Scholar 

  45. S. Ahmadi, I. Mohammadi, and S.K. Sadrnezhaad, Hydroxyapatite Based and Anodic Titania Nanotube Biocomposite Coatings: Fabrication, Characterization and Electrochemical Behavior, Surf. Coat. Tech., 2016, 287, p 67–15.

    CAS  Google Scholar 

  46. C.-M. Lin and S.-K. Yen, Characterization and Bond Strength of Electrolytic HA/TiO2 Double Layers for Orthopedic Applications, J. Mater. Sci. Mater. M., 2004, 15(11), p 1237–1246.

    CAS  Google Scholar 

  47. H. Farnoush, J.A. Mohandesi, and H. Çimenoğlu, Micro-scratch and Corrosion Behavior of Functionally Graded HA-TiO2 Nanostructured Composite Coatings Fabricated by Electrophoretic Deposition, J. Mech. Behav. Biomed., 2015, 46, p 31–40.

    CAS  Google Scholar 

  48. W.J. Weng, S. Zhang, K. Cheng, H.B. Qu, P.Y. Du, G. Shen, J. Yuan, and G.R. Han, Sol-gel Preparation of Bioactive Apatite Films, Surf. Coat. Tech., 2003, 167(2–3), p 292–296.

    CAS  Google Scholar 

  49. S.L. Mei, H.Y. Wang, W. Wang, L.P. Tong, H.B. Pan, C.S. Ruan, Q.L. Ma, M.Y. Liu, H.L. Yang, L. Zhang, Y.C. Cheng, Y.M. Zhang, L.Z. Zhao, and P.K. Chu, Antibacterial Effects and Biocompatibility of Titanium Surfaces with Graded Silver Incorporation in Titania Nanotubes, Biomaterials, 2014, 35(14), p 4255–4265.

    CAS  Google Scholar 

  50. N. Murugan, C. Murugan, and A.K. Sundramoorthy, In Vitro and In Vivo Characterization of Mineralized Hydroxyapatite/Polycaprolactone-Graphene Oxide Based Bioactive Multifunctional Coating on Ti Alloy for Bone Implant Applications, Arab. J. Chem., 2018, 11(6), p 959–969.

    CAS  Google Scholar 

  51. J. Liu, F.B. Li, C. Liu, H.Y. Wang, B.R. Ren, K. Yang, and E.L. Zhang, Effect of Cu Content on the Antibacterial Activity of Titanium-Copper Sintered Alloys, Mat. Sci. Eng. C–Mater., 2014, 35(1), p 392–400.

    Google Scholar 

  52. R.Q. Hang, A. Gao, X.B. Huang, X.G. Wang, X.Y. Zhang, L. Qin, and B. Tang, Antibacterial Activity and Cytocompatibility of Cu-Ti-O Nanotubes, J. Biomed. Mater. Res. A, 2014, 102(6), p 1850–1858.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of Shanghai, China (No. 15ZR1428400), Shanghai Engineering Research Center of High-Performance Medical Device Materials (No. 20DZ2255500), and the Grant-in Aid for Scientific Research (C) (No. 20K05139) from JSPS (Japan Society for the Promotion of Science), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Mitsuo Niinomi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, Q., Li, J. et al. Antibacterial Cu-Doped HA/TiO2 Bioactive Ceramic Composite Coating with Enhanced Adhesion on Pure Ti. J. of Materi Eng and Perform 32, 6151–6159 (2023). https://doi.org/10.1007/s11665-022-07541-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07541-6

Keywords

Navigation