Skip to main content

Advertisement

Log in

Silver and copper addition enhances the antimicrobial activity of calcium hydroxide coatings on titanium

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrochemically assisted deposition of Ca(OH)2 (Portlandite) coatings on titanium surfaces has been proven as a promising method to provide the substrate with a most desirable combination of significant bacterial growth reduction on one hand and good biocompatibility on the other. Due to the rapid in vivo transformation of Ca(OH)2 to hydroxyapatite, the antimicrobial activity will be an ephemeral property of the coating when implanted into the human body. In this study, the ability to reduce bacterial growth of such portlandite coatings was significantly enhanced by an ionic modification with copper and silver ions. Antibacterial tests revealed a noticeably elevated reduction of bacterial growth, especially for copper and even at a relatively low copper content of about 0.3 wt.%. In addition, the cytocompatibility, a crucial prerequisite for potential in vivo biocompatibility, of the copper-modified coating was comparable to pure calcium hydroxide coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alves AC, Wenger F, Ponthiaux P, Celis JP, Pinto AM, Rocha LA, et al. Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochim Acta. 2017;234:16–27. https://doi.org/10.1016/j.electacta.2017.03.011

    Article  CAS  Google Scholar 

  2. Asri RIM, Harun WSW, Hassan MA, Ghani SAC, Buyong Z. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater. 2016;57:95–108. https://doi.org/10.1016/j.jmbbm.2015.11.031

    Article  CAS  Google Scholar 

  3. Lobo AO, Otubo J, Matsushima JT, Corat EJ. Rapid obtaining of nano-hydroxyapatite bioactive films on NiTi shape memory alloy by electrodeposition process. J Mater Eng Perform. 2011;20:793–7. https://doi.org/10.1007/s11665-010-9751-9

    Article  CAS  Google Scholar 

  4. Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - A review. Acta Biomater. 2014;10:557–79. https://doi.org/10.1016/j.actbio.2013.10.036

    Article  CAS  Google Scholar 

  5. Ban SJ, Maruno S. Effect of temperature on electrochemical deposition of calcium-phosphate coatings in a simulated body fluid. Biomaterials. 1995;16:977–81. https://doi.org/10.1016/0142-9612(95)94904-y

    Article  CAS  Google Scholar 

  6. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–S101. https://doi.org/10.1007/s005860100282

    Article  Google Scholar 

  7. Ehrenfest DMD, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28:198–206. https://doi.org/10.1016/j.tibtech.2009.12.003

    Article  CAS  Google Scholar 

  8. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85. https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  CAS  Google Scholar 

  9. Uckay I, Hoffmeyer P, Lew D, Pittet D. Prevention of surgical site infections in orthopaedic surgery and bone trauma: state-of-the-art update. J Hosp Infect. 2013;84:5–12. https://doi.org/10.1016/j.jhin.2012.12.014

    Article  CAS  Google Scholar 

  10. Zhao LZ, Chu PK, Zhang YM, Wu ZF. Antibacterial coatings on titanium implants. J Biomed Mater Res Part B-Appl Biomater. 2009;91B:470–80. https://doi.org/10.1002/jbm.b.31463

    Article  CAS  Google Scholar 

  11. Goodman SB, Yao ZY, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34:3174–83. https://doi.org/10.1016/j.biomaterials.2013.01.074

    Article  CAS  Google Scholar 

  12. Shivaram A, Bose S, Bandyopadhyay A. Understanding long-term silver release from surface modified porous titanium implants. Acta Biomater. 2017;58:550–60. https://doi.org/10.1016/j.actbio.2017.05.048

    Article  CAS  Google Scholar 

  13. Furko M, Jiang Y, Wilkins TA, Balazsi C. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Mater Sci Eng C-Mater Biol Appl. 2016;62:249–59. https://doi.org/10.1016/j.msec.2016.01.060

    Article  CAS  Google Scholar 

  14. Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, et al. Hard implant coatings with antimicrobial properties. J Mater Sci-Mater Med. 2011;22:2711–20. https://doi.org/10.1007/s10856-011-4457-6

    Article  CAS  Google Scholar 

  15. Wan YZ, Raman S, He F, Huang Y. Surface modification of medical metals by ion implantation of silver and copper. Vacuum. 2007;81:1114–8. https://doi.org/10.1016/j.vacuum.2006.12.011

    Article  CAS  Google Scholar 

  16. Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C-Mater Biol Appl. 2016;61:965–78. https://doi.org/10.1016/j.msec.2015.12.062

    Article  CAS  Google Scholar 

  17. Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-Rep. 2004;47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  18. Mavis B, Tas AC. Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates. J Am Ceram Soc. 2000;83:989–91.

    Article  CAS  Google Scholar 

  19. Sun LM, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res. 2001;58:570–92. https://doi.org/10.1002/jbm.1056

    Article  CAS  Google Scholar 

  20. Rossler S, Sewing A, Stolzel M, Born R, Scharnweber D, Dard M, et al. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J Biomed Mater Res Part A. 2003;64A:655–63. https://doi.org/10.1002/jbm.a.10330

    Article  CAS  Google Scholar 

  21. Shirkhanzadeh M, Azadegan M. Formation of carbonate apatite on calcium phosphate coatings containing silver ions. J Mater Sci-Mater Med. 1998;9:385–91. https://doi.org/10.1023/a:1013231529439

    Article  CAS  Google Scholar 

  22. Pishbin F, Mourino V, Gilchrist JB, McComb DW, Kreppel S, Salih V, et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9:7469–79. https://doi.org/10.1016/j.actbio.2013.03.006

    Article  CAS  Google Scholar 

  23. Zhang QY, Leng Y, Xin RL. A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials. 2005;26:2857–65. https://doi.org/10.1016/j.biomaterials.2004.08.016

    Article  CAS  Google Scholar 

  24. Meininger M, Wolf-Brandstetter C, Zerweck J, Wenninger F, Gbureck U, Groll J, et al. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces. Mater Sci Eng C. 2016;67:65–71. https://doi.org/10.1016/j.msec.2016.04.102

    Article  CAS  Google Scholar 

  25. Meininger M, Schmitz T, Wagner T, Ewald A, Gbureck U, Groll J, et al. Real-time measurement of protein adsorption on electrophoretically deposited hydroxyapatite coatings and magnetron sputtered metallic films using the surface acoustic wave technique. Mater Sci & Eng C-Mater Biol Appl. 2016;61:351–4. https://doi.org/10.1016/j.msec.2015.12.075

    Article  CAS  Google Scholar 

  26. Cao HL, Liu XY. Plasma-Sprayed Ceramic Coatings for Osseointegration. Int J Appl Ceram Technol. 2013;10:1–10. https://doi.org/10.1111/j.1744-7402.2012.02770.x

    Article  CAS  Google Scholar 

  27. Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications - Part I: Solution chemistry. J Mater Sci-Mater Med. 1999;10:169–76. https://doi.org/10.1023/a:1008937507714

    Article  CAS  Google Scholar 

  28. Moseke C, Braun W, Ewald A. Electrochemically deposited Ca(OH)2 coatings as a bactericidal and osteointegrative modification of Ti implants. Adv Eng Mater. 2009;11:B1–B6. https://doi.org/10.1002/adem.200800154

    Article  CAS  Google Scholar 

  29. Mohammadi Z, Dummer PMH. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44:697–730. https://doi.org/10.1111/j.1365-2591.2011.01886.x

    Article  CAS  Google Scholar 

  30. Muller MP, MacDougall C, Lim M. Ontario Agcy Hlth P, Public Hlth O, Pidac IPC. Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review. J Hosp Infect. 2016;92:7–13. https://doi.org/10.1016/j.jhin.2015.09.008.

    Article  CAS  Google Scholar 

  31. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941–65. https://doi.org/10.2147/ijn.s134526

    Article  Google Scholar 

  32. Ewald A, Gluckermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22. https://doi.org/10.1186/1475-925x-5-22

    Article  Google Scholar 

  33. Gant VA, Wren MWD, Rollins MSM, Jeanes A, Hickok SS, Haj TJ. Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother. 2007;60:294–9. https://doi.org/10.1093/jac/dkm201

    Article  CAS  Google Scholar 

  34. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60:1–7. https://doi.org/10.1016/j.jhin.2004.11.014

    Article  CAS  Google Scholar 

  35. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77:1541–7. https://doi.org/10.1128/aem.02766-10

    Article  CAS  Google Scholar 

  36. Wolf-Brandstetter C, Oswald S, Bierbaum S, Wiesmann HP, Scharnweber D. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition. J Biomed Mater Res Part B-Appl Biomater. 2014;102:160–72. https://doi.org/10.1002/jbm.b.32992

    Article  CAS  Google Scholar 

  37. Braissant O, Chavanne P, de Wild M, Pieles U, Stevanovic S, Schumacher R, et al. Novel microcalorimetric assay for antibacterial activity of implant coatings: The cases of silver-doped hydroxyapatite and calcium hydroxide. J Biomed Mater Res Part B-Appl Biomater. 2015;103:1161–7. https://doi.org/10.1002/jbm.b.33294

    Article  CAS  Google Scholar 

  38. Yu Q, Wu ZQ, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13. https://doi.org/10.1016/j.actbio.2015.01.018

    Article  CAS  Google Scholar 

  39. Zaborowska M, Welch K, Branemark R, Khalilpour P, Engqvist H, Thomsen P, et al. Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects. J Biomed Mater Res Part B-Appl Biomater. 2015;103:179–87. https://doi.org/10.1002/jbm.b.33179

    Article  CAS  Google Scholar 

  40. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8. https://doi.org/10.1016/j.biomaterials.2004.05.030

    Article  CAS  Google Scholar 

  41. Handbook of Chemistry and Physics. 79th edn. Boca Raton: CRC Press; 1999.

  42. Molteni C, Abicht HK, Solioz M. Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol. 2010;76:4099–101. https://doi.org/10.1128/aem.00424-10

    Article  CAS  Google Scholar 

  43. Gustavsson J, Ginebra MP, Planell J, Engel E. Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite. J Mater Sci-Mater Med. 2012;23:2509–20. https://doi.org/10.1007/s10856-012-4705-4

    Article  CAS  Google Scholar 

  44. Klimek K, Belcarz A, Pazik R, Sobierajska P, Han T, Wiglusz RJ, et al. “False” cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater Sci & Eng C-Mater Biol Appl. 2016;65:70–9. https://doi.org/10.1016/j.msec.2016.03.105

    Article  CAS  Google Scholar 

  45. Schamel M, Barralet JE, Groll J, Gbureck U. In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics. Biomater Res. 2017;21:10 https://doi.org/10.1186/s40824-017-0096-4

    Article  CAS  Google Scholar 

  46. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, et al. Silver-coated megaendoprostheses in a rabbit model - an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547–56. https://doi.org/10.1016/j.biomaterials.2004.01.008

    Article  CAS  Google Scholar 

  47. Ewald A, Hosel D, Patel S, Grover LM, Barralet JE, Gbureck U. Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater. 2011;7:4064–70. https://doi.org/10.1016/j.actbio.2011.06.049

    Article  CAS  Google Scholar 

  48. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, et al. A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J Mater Sci-Mater Med. 2005;16:883–8. https://doi.org/10.1007/s10856-005-4422-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the DFG State Major Instrumentation Programme, funding the crossbeam scanning electron microscope Zeiss CB 340 (INST 105022/58-1 FUGG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gbureck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: U. Gbureck and C. Moseke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meininger, M., Meininger, S., Groll, J. et al. Silver and copper addition enhances the antimicrobial activity of calcium hydroxide coatings on titanium. J Mater Sci: Mater Med 29, 61 (2018). https://doi.org/10.1007/s10856-018-6065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6065-1

Navigation