Skip to main content
Log in

Evolution of Heterogeneous Microstructure and its Effects on Tensile Properties of Selective Laser Melted AlSi10Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To figure out the evolution of the heterogeneous microstructure across the molten pool boundaries (MPBs) and its effects on tensile properties of selective laser melted (SLM) AlSi10Mg alloy, two of the most commonly used scanning strategies, i.e., bidirectional scanning within a layer and with a 90° and 67° rotation for the successive layers (zigzag-90 and zigzag-67) were adopted. Grain morphology, solidification microstructure, texture and room temperature tensile properties of the SLMed AlSi10Mg alloy under the two scanning strategies were studied. The coarse columnar and fine equiaxed grains were observed in a single solidified track under the two scanning strategies. The columnar grains dominated the bulk of the molten pool (MP) while the equiaxed grains mainly distributed along the MPBs. The equiaxed grains along MPBs break the continuous growth of the columnar grains and lead to a weak texture. A new mechanism based on heterogeneous nucleation and constitutional supercooling was proposed to explain the formation of heterogeneous microstructure across the MPBs. The tensile test was performed in the horizontal (perpendicular to the build direction) and the vertical (parallel to the build direction) directions fabricated under the two scanning strategies. The mechanical properties showed obvious fluctuation, and the yield strength of the horizontal direction is generally higher than that of the vertical direction. The distribution of pores and MPBs is the main factors to influence the tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

source of nuclei particles during melting, (a) the initial molten pool, (b) the steady molten pool. TE and TL denote the eutectic temperature and equilibrium liquidus temperature

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Wei, Z.Y. Wei, Z. Chen, J. Du, Y.Y. He, J.F. Li and Y.T. Zhou, The AlSi10Mg Samples Produced by Selective Laser Melting: Single Track, Densification, Microstructure and Mechanical Behavior, Appl. Surf. Sci., 2017, 408, p 38–50.

    Article  CAS  Google Scholar 

  2. W.D. Huang and X. Lin, Research Progress in Laser Solid Forming of High-Performance Metallic Components at the State Key Laboratory of Solidification Processing of China, 3D Print, Addit. Manuf., 2014, 1(3), p 156–165.

    Google Scholar 

  3. S.B. Ren, Y.H. Chen, T.T. Liu and X.H. Qu, Effect of Build Orientation on Mechanical Properties and Microstructure of Ti-6Al-4V Manufactured by Selective Laser Melting, Metall. Mater. Trans. A, 2019, 50, p 4388–4409.

    Article  CAS  Google Scholar 

  4. Q. Zhang, J. Chen, Z.L. Qi, X. Lin, H. Tan and W.D. Huang, A Processing Route for Achieving Isotropic Tensile Properties in Laser Solid Formed α + β Titanium Alloy, Metall. Mater. Trans. A, 2018, 49(8), p 3651–3662.

    Article  CAS  Google Scholar 

  5. S. Sui, J. Chen, X.L. Ming, S.P. Zhang, X. Lin and W.D. Huang, The Failure Mechanism of 50% Laser Additive Manufactured Inconel 718 and the Deformation Behavior of Laves Phases During a Tensile Process, Int. J. Adv. Manuf. Technol., 2017, 91, p 2733–2740.

    Article  Google Scholar 

  6. Q. Zhang, P. Ren, X.H. Tu, Y.H. Dai, X.J. Wang and W. Li, Effect of Heat Treatment on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Inconel 718 Alloy, J. Mater. Eng. Perform., 2019, 28, p 5376–5386.

    Article  CAS  Google Scholar 

  7. Y.Z. Lu, G.K. Huang, Y.Z. Wang, H.G. Li, Z.X. Qin and X. Lu, Crack-free Fe-based Amorphous Coating Synthesized by Laser Cladding, Mater. Lett., 2018, 210, p 46–50.

    Article  CAS  Google Scholar 

  8. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft and N.M. Everitt, On the Formation of AlSi10Mg Single Tracks and Layers in Selective Laser Melting: Microstructure and Nano-Mechanical Properties, J. Mater. Process. Tech., 2016, 230, p 88–98.

    Article  CAS  Google Scholar 

  9. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki and M. Kobashi, Change in Microstructure of Selectively Laser Melted AlSi10Mg Alloy with Heat Treatments, Mater. Sci. Eng. A., 2017, 704, p 218–228.

    Article  CAS  Google Scholar 

  10. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 122–224.

    Article  Google Scholar 

  11. X.H. Liu, C.C. Zhao, X. Zhou, Z.J. Shen and W. Liu, Microstructure of Selective Laser Melted AlSi10Mg Alloy, Mater. Des, 2019, 168, p 107677.

    Article  CAS  Google Scholar 

  12. E. Louvis, P. Fox and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Tech., 2011, 211(2), p 275–284.

    Article  CAS  Google Scholar 

  13. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke and J.P. Kruth, Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg, In: Solid Free. Fabr. Symp. 2011, 22: 484-495

  14. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting, Addit. Manuf., 2014, 1–4, p 77–86.

    Google Scholar 

  15. A. Hadadzadeh, B.S. Amirkhiz, S. Shakerin, J. Kelly, J. Li and M. Mohammadi, Microstructural Investigation and Mechanical Behavior of a Two-Material Component Fabricated Through Selective Laser Melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg Cast Alloy Substrate, Addit. Manuf., 2020, 31, p 100937.

    CAS  Google Scholar 

  16. N. Takata, H. Kodaira, A. Suzuki and M. Kobashi, Size Dependence of Microstructure of AlSi10Mg Alloy Fabricated by Selective Laser Melting, Mater. Charact., 2018, 143, p 18–26.

    Article  CAS  Google Scholar 

  17. L. Thijs, K. Kempen, J.P. Kruth and J. Van Humbeeck, Fine-structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater., 2013, 61(5), p 1809–1819.

    Article  CAS  Google Scholar 

  18. H. Qin, V. Fallah, Q.S. Dong, M. Brochu, M.R. Daymond and M. Gallerneault, Solidification Pattern, Microstructure and Texture Development in Laser Powder Bed Fusion (LPBF) of Al10SiMg Alloy, Mater. Charact., 2018, 145, p 29–38.

    Article  CAS  Google Scholar 

  19. M. Mohammadi and H. Asgari, Achieving Low Surface Roughness AlSi10Mg-200C Parts Using Direct Metal Laser Sintering, Addit. Manuf., 2018, 20, p 23–32.

    CAS  Google Scholar 

  20. Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang and R.D.K. Misra, Role of Melt Pool Boundary Condition in Determining the Mechanical Properties of Selective Laser Melting AlSi10Mg Alloy, Mater. Sci. Eng. A., 2019, 740–741, p 148–156.

    Article  Google Scholar 

  21. W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, 1989

  22. S. Kou, Welding Metallurgy, (2nd ed.), Wiley-Interscience, New Jersey, 2003, 28: 431–446

  23. S.M.H. Hojjatzadeh, N.D. Parab, W.T. Yan, Q.L. Guo, L.H. Xiong, C. Zhao, M.L. Qu, L.I. Escano, X.H. Xiao, K. Fezzaa, W. Everhart, T. Sun and L.Y. Chen, Pore Elimination Mechanisms during 3D Printing of Metals, Nat. Commun., 2019, 10, p 1–8.

    Article  Google Scholar 

  24. M. Zheng, L. Wei, J. Chen, Q. Zhang, C.L. Zhong, X. Lin and W.D. Huang, A Novel Method for the Molten Pool and Porosity Formation Modelling in Selective Laser Melting, Int. J. Heat Mass Transf., 2019, 140, p 1091–1105.

    Article  CAS  Google Scholar 

  25. S. Griffiths, M.D. Rossell, J. Croteau, N.Q. Vo, D.C. Dunand and C. Leinenbach, Effect of Laser Rescanning on the Grain Microstructure of a Selective laser melted Al-Mg-Zr alloy, Mater. Charact., 2018, 143, p 34–42.

    Article  CAS  Google Scholar 

  26. M. Easton and D. Stjohn, Grain Refinement of Aluminum Alloys Part I. The Nucleant and Solute Paradigms—A Review of the Literature, Metall. Mater. Trans. A., 1999, 30, p 1613–1623.

    Article  Google Scholar 

  27. L. Girelli, M. Tocci, M. Gelfi and A. Pola, Study of Heat Treatment Parameters for Additively Manufactured AlSi10Mg in Comparison with Corresponding Cast Alloy, Mater. Sci. Eng. A., 2019, 739, p 317–328.

    Article  CAS  Google Scholar 

  28. S.R. Ch, A. Raja, P. Nadig, R. Jayaganthan and N.J. Vasa, Influence of Working Environment and Built Orientation on the Tensile Properties of Selective Laser Melted AlSi10Mg Alloy, Mater. Sci. Eng. A., 2019, 750, p 141–151.

    Article  CAS  Google Scholar 

  29. B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda and K. Kondoh, Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy, Scr. Mater., 2017, 141, p 45–49.

    Article  CAS  Google Scholar 

  30. L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan and L.J. Guo, Enhancement in Mechanical Properties of Selectively Laser-Melted AlSi10Mg Aluminum Alloys by T6-like Heat Treatment, Mater. Sci. Eng. A., 2018, 734, p 229–310.

    Article  Google Scholar 

  31. U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers and M.M. Attallah, Selective Laser Melting of AlSi10Mg: Influence of Post-processing on the Microstructural and Tensile Properties Development, Mater. Des., 2016, 105, p 212–222.

    Article  CAS  Google Scholar 

  32. J. Delahaye, J.T. Tchuindjang, J. Lecomte-beckers, O. Rigo, A.M. Habraken and A. Mertens, Influence of Si Precipitates on Fracture Mechanisms of AlSi10Mg Parts Processed by Selective Laser Melting, Acta Mater., 2019, 175, p 160–170.

    Article  CAS  Google Scholar 

  33. C.C. Zhang, H.H. Zhu, Z.H. Hu, L. Zhang and X.Y. Zeng, A Comparative Study on Single-Laser and Multi-Laser Selective Laser Melting AlSi10Mg: Defects, Microstructure and Mechanical Properties, Mater. Sci. Eng. A., 2019, 746, p 416–423.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technologies R&D Program [Grant 2016YFB11000100] and Fundamental Research Funds for the Central Universities [Grant No. 21618325].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhang or Xiaojian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Zhang, Q., Wei, Y. et al. Evolution of Heterogeneous Microstructure and its Effects on Tensile Properties of Selective Laser Melted AlSi10Mg Alloy. J. of Materi Eng and Perform 30, 4341–4355 (2021). https://doi.org/10.1007/s11665-021-05757-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05757-6

Keywords

Navigation