Skip to main content
Log in

Effect of Heat Treatment on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Inconel 718 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure characteristics of the selective laser melted Inconel 718 alloy under as-deposited, homogenization + solution + aging (HSA) and solution + aging (SA) conditions were studied. The anisotropy and heterogeneity of mechanical properties under different conditions were also investigated. Under the as-deposited condition, the morphology and size of the grains are heterogeneous. The dendrite structures which grow nearly perpendicular to the molten pool traces, accompanying interdendritic Laves phase, can be observed within the grains. The dendrite structure completely disappeared, and the Laves phases embedded in the interdendritic regions also dissolved into the matrix to precipitate γ′ and γ″ phases after heat treatments. Fully recrystallized grains were obtained under the HSA condition, while only incomplete recrystallized grains were obtained under the SA condition. However, the characteristics of γ′ and γ″ phases are very similar under the HSA and SA conditions. Significant improvement in strength after heat treatments was due to the dissolution of undesirable Laves phase and the precipitation of γ′ and γ″ phases. For all the three conditions, different tensile properties were observed depending on the orientation of the specimens. The scatter of mechanical properties is notable, and heat treatments increased the scatter of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60, p 2229–2239

    Article  CAS  Google Scholar 

  2. F.C. Liu, X. Lin, C.P. Huang, M.H. Song, G.L. Yang, J. Chen, and W.D. Huang, The Effect of Laser Scanning Path on Microstructures and Mechanical Properties of Laser Solid Formed Nickel-Base Superalloy Inconel 718, J. Alloys Compd., 2011, 509, p 4505–4509

    Article  CAS  Google Scholar 

  3. S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, and R.R. Dehoff, Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification, Metall. Mater. Trans. A, 2018, 49(9), p 3764–3780

    Article  CAS  Google Scholar 

  4. R.C. Roger, The Superalloys: Fundamentals and Applications, 2012.

  5. Y.T. Chen, A.C. Yeh, M.Y. Li, and S.M. Kuo, Effects of Processing Routes on Room Temperature Tensile Strength and Elongation for Inconel 718, Mater. Des., 2017, 119, p 235–243

    Article  CAS  Google Scholar 

  6. G.A. Rao, M. Srinivas, and D.S. Sarma, Effect of Oxygen Content of Powder on Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2006, 435, p 84–99

    Article  Google Scholar 

  7. D.H. Smith, J. Bicknell, L. Jorgensen, B.M. Patterson, N.L. Cordes, I. Tsukrov, and M. Knezevic, Microstructure and Mechanical Behavior of Direct Metal Laser Sintered Inconel Alloy 718, Mater. Charact., 2016, 113, p 1–9

    Article  CAS  Google Scholar 

  8. W.D. Huang and X. Lin, Research Progress in Laser Solid Forming of High-Performance Metallic Components at the State Key Laboratory of Solidification Processing of China, 3D Print, Addit. Manuf., 2014, 1, p 156–165

    Google Scholar 

  9. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater Sci., 2018, 92, p 112–224

    Article  CAS  Google Scholar 

  10. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai, Effects of Selective Laser Melting Additive Manufacturing Parameters of Inconel 718 on Porosity, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 735, p 182–190

    Article  CAS  Google Scholar 

  11. J.P. Choi, G.H. Shin, S. Yang, D.Y. Yang, J.S. Lee, M. Brochu, and J.H. Yu, Densification and Microstructural Investigation of Inconel 718 Parts Fabricated by Selective Laser Melting, Powder Technol., 2017, 310, p 60–66

    Article  CAS  Google Scholar 

  12. D.Y. Zhang, W. Niu, X.Y. Cao, and Z. Liu, Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy, Mater. Sci. Eng. A, 2015, 644, p 32–40

    Article  CAS  Google Scholar 

  13. H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, and G.P. Zhang, Effect of Scanning Strategy on Grain Structure and Crystallographic Texture of Inconel 718 Processed by Selective Laser Melting, J. Mater. Sci. Technol., 2018, 34, p 1799–1804

    Article  Google Scholar 

  14. D.Y. Zhang, Z. Feng, C.J. Wang, W.D. Wang, Z. Liu, and W. Niu, Comparison of Microstructures and Mechanical Properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting, Mater. Sci. Eng. A, 2018, 724, p 357–367

    Article  CAS  Google Scholar 

  15. T. Trosch, J. Stroßner, R. Volkl, and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431

    Article  CAS  Google Scholar 

  16. S. Sui, J. Chen, X.L. Ming, S.P. Zhang, X. Lin, and W.D. Huang, The Failure Mechanism of 50% Laser Additive Manufactured Inconel 718 and the Deformation Behavior of Laves Phases During a Tensile Process, Int. J. Adv. Manuf. Technol., 2017, 91, p 2733–2740

    Article  Google Scholar 

  17. J. Stroßner, M. Terock, and U. Glatzel, Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM), Adv. Eng. Mater., 2015, 17, p 1099–1105

    Article  Google Scholar 

  18. Z.M. Wang, K. Guan, M. Gao, X.Y. Li, X.F. Chen, and X.Y. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2012, 513, p 518–523

    Article  CAS  Google Scholar 

  19. J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186

    Article  CAS  Google Scholar 

  20. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586

    Article  CAS  Google Scholar 

  21. M. Ni, C. Chen, X.J. Wang, P.W. Wang, R.D. Li, X.Y. Zhang, and K.C. Zhou, Anisotropic Tensile Behavior of In Situ Precipitation Strengthened Inconel 718 Fabricated by Additive Manufacturing, Mater. Sci. Eng. A, 2017, 701, p 344–351

    Article  CAS  Google Scholar 

  22. H.F. Gu, H.J. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel, J. Exp. Psychol. Gen., 2007, 136, p 23–42

    Article  Google Scholar 

  23. D.H. Kim and C.M. Lee, A Study of Cutting Force and Preheating-Temperature Prediction for Laser-Assisted Milling of Inconel 718 and AISI, 1045 Steel, Int. J. Heat Mass Transf., 2014, 71, p 264–274

    Article  CAS  Google Scholar 

  24. E. Chlebus, K. Gruber, B. Kuznicka, J. Kurzac, and T. Kurzynowski, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by selective Laser Melting, Mater. Sci. Eng. A, 2015, 639, p 647–655

    Article  CAS  Google Scholar 

  25. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, Inconel 718: A Solidification Diagram, Metall. Trans. A, 1989, 20, p 2149–2158

    Article  Google Scholar 

  26. W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, 1986.

  27. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c Crystals, Acta. Mater., 1997, 45, p 2633–2638

    Article  CAS  Google Scholar 

  28. J.F. Radavich, The Physical Metallurgy of Cast and Wrought Alloy 718, Metall. Appl., 1989, 718, p 229–240

    Google Scholar 

  29. X. Li, J.J. Shi, C.H. Wang, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, and G.F. Chen, Effect of Heat Treatment on Microstructure Evolution of Inconel 718 Alloy Fabricated by Selective Laser Melting, J. Alloys Compd., 2018, 764, p 639–649

    Article  CAS  Google Scholar 

  30. A. Oradei-Basile and J.F. Radavich, A Current TTT Diagram for Wrought Alloy 718, Superalloys, 1991, 718(625), p 325–335

    Article  Google Scholar 

  31. G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li, and G.F. Chen, Investigations of γ′, γ″ and δ Precipitates in Heat-Treated Inconel 718 Alloy Fabricated by Selective Laser Melting, Mater. Charact., 2018, 136, p 398–406

    Article  CAS  Google Scholar 

  32. W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, and K.P. Hoyer, Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting, Addit. Manuf., 2017, 13, p 93–102

    Article  CAS  Google Scholar 

  33. S. Banumathy, R.K. Mandal, and A.K. Singh, Texture and Anisotropy of a Hot Rolled Ti-16Nb Alloy, J. Alloys Compd., 2010, 500, p 26–30

    Article  Google Scholar 

  34. S. Sui, H. Tan, J. Chen, C.L. Zhong, Z. Li, W. Fan, A. Gasser, and W.D. Huang, The Influence of Laves Phases on the Room Temperature Tensile Properties of Inconel 718 Fabricated by Powder Feeding Laser Additive Manufacturing, Acta Mater., 2019, 718, p 413–427

    Article  Google Scholar 

  35. G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28(4), p 1942–1949

    Article  CAS  Google Scholar 

  36. R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10, p 817–822

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Supported by National Key R&D Program of China (2017YFB0305100) and Fundamental Research Funds for the Central Universities (Grant No. 21618325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Ren, P., Tu, X. et al. Effect of Heat Treatment on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Inconel 718 Alloy. J. of Materi Eng and Perform 28, 5376–5386 (2019). https://doi.org/10.1007/s11665-019-04309-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04309-3

Keywords

Navigation