Skip to main content
Log in

Predominant Solidification Modes of 316 Austenitic Stainless Steel Coatings Deposited by Laser Cladding on 304 Stainless Steel Substrates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AISI 304 austenitic steel is one of the stainless steels most widely used as a substrate for coating using a laser as a heat source (laser cladding). The AISI 316 steel contains similar quantities of alloying elements as 304 steel, with the addition of 2 pct molybdenum, which provides greater corrosion resistance compared to 304 steel. Due to its better mechanical and corrosion resistance, AISI 316 steel was used here as a coating to improve the properties of a 304 substrate. The depositions were evaluated considering their geometric and microstructural characteristics, which were correlated with variations of the deposition parameters. The power, speed, and amount of coating metal added were altered, while the other parameters were kept constant. Increases of power and speed resulted in an increase of the diluted region, whereas increase of the amount of coating material led to decreased dilution. Two main types of solidification were observed in the same depositions: one with austenite (γ) as the primary phase, and the other with ferrite (δ) as the primary phase. Different substructures were apparent in the same type of solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296, pp. 280-84.

    Article  Google Scholar 

  2. [2] B. Du, Z. Zou, X. Wang, and S. Qu: Appl. Surf. Sci., 2008, vol. 254, pp. 6489-94.

    Article  Google Scholar 

  3. [3] E. Toyserkani, A. Khajepour, and S. Corbin: Laser Cladding, 1st ed, CRC Press LLC, Boca Raton, FL, 2005, pp. 7-17.

    Google Scholar 

  4. [4] L. Song, G. Zeng; H. Xiao, and X. Xianfeng: J. Manuf. Processes, 2016, vol. 24, pp. 116-24.

    Article  Google Scholar 

  5. [5] K. Li, D. Li, D. Liu, G. Pei, and L. Sun: Appl. Surf. Sci., 2015, vol. 340, pp. 143-50.

    Article  Google Scholar 

  6. [6] A. Fathi, E. Toyserkani, A. Khajepour, and M. Durali: J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 2613-23.

    Article  Google Scholar 

  7. [7] J.C. Lippold and D.J. Kotechi: Welding Metallurgy and Weldability of Stainless Steels, 1st ed, John Wiley & Sons Inc., Hoboken, NJ, 2005, pp. 141-88.

    Google Scholar 

  8. [8] J. F. Lancaster. Metallurgy of Welding, 6th ed, Woodhead Publishing Limited, Cambrigde, U.K., 1999, pp. 310-22.

    Book  Google Scholar 

  9. [9] J.C. Lippold: Weld. Res. Suppl., 1994, vol. 73, pp. 129s-39s.

    Google Scholar 

  10. [10] T.F.A. Santos and M.S. Andrade: Matéria, 2008, vol. 13, pp. 587-96.

    Google Scholar 

  11. [11] Z. Sun and H.Y. Han: Mat. Sci. Technol., 1994, vol. 10, pp. 823-29.

    Article  Google Scholar 

  12. [12] N. Suutala, T. Takalo, and T. Moisio: Mater. Trans. A, 1979, vol. 10, pp. 512-14.

    Article  Google Scholar 

  13. [13] H. Abe and Y. Watanabe: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1392-98.

    Article  Google Scholar 

  14. [14] J.W. Fu and Y.S. Yang: J. Alloys Compd., 2013, vol. 580, pp. 191-194.

    Article  Google Scholar 

  15. London Metal Exchange. https://www.lme.com. Accessed 22 Jan 2019.

  16. AMETEK Specialty Metal Products. https://www.finetubes.co.uk/products/materials/stainless-steel-tubes/alloy-316-uns-s31600-wnr-14401. Accessed 16 Feb 2019.

  17. Steel Tubes India. https://www.stindia.com/blog/stainless-steel-304-316l-price-per-kg-india.html. Accessed 16 Feb 2019.

  18. [18] P. Alvarez, M. A. Montealegre, J. E. Pulido-Jiménez, and J. I. Arrizubieta: J. Manuf. Mater. Process., 2018, vol. 2, pp.55-77.

    Google Scholar 

  19. [19] W. Gao, S. Zhao, F. Liu, Y. Wang, C. Zhou, and X. Lin: Surf. Coat. Technol., 2014, vol. 248, pp.54-62.

    Article  Google Scholar 

  20. A.J. Aumgaertner Filho and A.R. Gonzalez: Soldag. Insp., 2017, vol. 22, pp. 46–58.

  21. [21] J. Kim and Y. Peng: J. Mater. Process. Technol.,2000, vol. 104, pp. 284-93.

    Article  Google Scholar 

  22. [22] G. R. Desale, C.P. Paul, B. K. Gandhi, and S. C. Jain: Wear, 2009, vol. 266, pp. 975-87.

    Article  Google Scholar 

  23. [23] A. M. El-Batahgy: Mater. Lett., 1997, vol. 32, pp. 155-63.

    Article  Google Scholar 

  24. [24] K. Y. Chiu, F. T. Cheng, and H. C. Man: Mater. Sci. Eng. A, 2005, vol. 402, pp. 126-34.

    Article  Google Scholar 

  25. [25] C. Navas, A. Conde, B. J. Fernandez, F. Zubiri, and J. De Damborenea: Surf. Coat. Technol., 2005, vol. 194, pp. 136-42.

    Article  Google Scholar 

  26. [26] J. N. Dupont, J. C. Lippold, and S. D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st ed, John Wiley & Sons Inc., Hoboken, NJ, 2009, pp. 207-33.

    Book  Google Scholar 

  27. [27] A. L. Schaeffler: Met. Prog., 1949, vol. 56, pp. 680.

    Google Scholar 

  28. [28] J. Kim and Y. Peng: J. Mater. Process. Technol., 2000, vol. 104, no. 3, pp. 284-93.

    Article  Google Scholar 

  29. [29] Y. Huang: Opt. Laser Technol., 2011, vol. 43, pp. 965-73.

    Article  Google Scholar 

  30. [30] K.Y. Benyounis, A.G. Olabi, and M.S.J. Hashmi: J. Mater. Process. Technol., 2005, vol. 164-165, pp. 978-85.

    Article  Google Scholar 

  31. [31] N. Seto, S. Katayama, and A. Matsunawa: J. Laser Appl., 2000, vol. 12, pp. 245-50.

    Article  Google Scholar 

  32. [32] C. Boulmer-Leborgne, J. Hermann, and B. Dubreuil: Plasma Sources Sci. Technol., 1993, vol. 2, pp. 219-26.

    Article  Google Scholar 

  33. [33] M. Beck, P. Berger, and H. Hugel: J. Phys. D: Appl. Phys., 1998, vol. 28, pp. 2430-42.

    Article  Google Scholar 

  34. [34] J.M. Vadillo and J. Laserna: Acta Part B: At. Spectrosc., 2004, vol. 59, pp. 147-61.

    Article  Google Scholar 

  35. [35] J. Xu, Y. Luo, L. Zhu, J. Han, C. Zhang, and D. Chen: Measurement, 2019, vol. 134, p.25-32.

    Article  Google Scholar 

  36. M.F. Schneider. PhD Thesis, Universiteit Twente, Enschede, 1998.

  37. [37] G.J. Davies and J. G. Garland: Int. Metall. Rev., 1975, vol. 20, pp. 83-108.

    Article  Google Scholar 

  38. [38] P. A. Molian: J. Mater. Sci. Lett., 1985, vol. 4, pp. 281-283.

    Article  Google Scholar 

  39. [39] S. Katayama and A. Matsunawa. Proc. Laser Materials Processing Symp., 1984, vol. 44, pp. 60-7.

    Article  Google Scholar 

  40. [40] J.C. Lippold. Welding Metallurgy and Weldability, 1st ed, John Wiley & Sons Inc, Hoboken, NJ, 2014, pp. 9-69.

    Google Scholar 

  41. [41] K. Zhang, S. Wang, W. Liu, and X. Shang: Mater. Des., 2014, vol. 55, pp. 104-19.

    Article  Google Scholar 

  42. [42] J. W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117-31.

    Article  Google Scholar 

  43. [43] J. A Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247-69.

    Article  Google Scholar 

  44. P. Hochanadel, T. Lienert, J. Martinez, R. Martinez, and M. Johnson: in Hot Cracking Phenomena in Welds III, Springer, Berlin, 2011, pp. 145–60.

  45. [45] S. A. David, S. S. Babu, and J. M. Vitek: Jom, 2003, vol. 55, pp. 14-20.

    Article  Google Scholar 

  46. [46] S. A. David and J. M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213-45.

    Article  Google Scholar 

  47. [47] J. C. Villafuerte, H. W. Kerr, and S.A. David: Mater. Sci. Eng. A, 1995, vol. 194, pp. 187-91.

    Article  Google Scholar 

  48. [48] W. J. Poole and F. Weinberg: Metall. Mater. Trans. A, 1998, vol. 29, pp. 855-61.

    Article  Google Scholar 

  49. [49] P. Xu, C. Lin, C. Zhou, and X. Yi: Surf. Coat. Technol., 2014, vol. 238, pp. 9-14.

    Article  Google Scholar 

  50. [50] M. A. Anjos, R. Vilar, and Y. Y. Qiu: Surf. Coat. Technol., 1997, vol. 92, pp. 142-49.

    Article  Google Scholar 

  51. [51] D. W. Zhang, T. C. Lei, and F. J. Li: Wear, 2001, vol. 251, pp. 1372-76.

    Article  Google Scholar 

  52. [52] S. Sun, Y. Durandet, and M. Brandt: Surf. Coat. Technol., 2005, vol. 194, pp. 225-31.

    Article  Google Scholar 

  53. J.N. DuPont: in ASM Handbook, vol. 6A, ASM International, 2011, pp. 105–08.

  54. [54] K.Y. Luo, X. Jing, J. Sheng, G.F. Sun, Z. Yan, and J.Z. Lu: J. Alloys Compd., 2016, vol. 673, pp. 158-69.

    Article  Google Scholar 

  55. [55] I. Hemmati, V. Ocelik, and J. T. M. De Hosson: J. Mater. Sci., 2011, vol. 46, pp. 3405-14.

    Article  Google Scholar 

  56. [56] S. K. Samanta, S. K. Mitra, and T. K. Pal: ISIJ Int., 2006, vol. 46, pp. 100-5.

    Article  Google Scholar 

  57. S.A. David, J.M. Vitek, and T.L. Hebble: Weld. Res., 1987, pp. 289s–300s.

  58. [58] B.R. Barbero and E.S. Ureta: Computer-Aided Des., 2011, vol. 43, pp. 188-206.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by FACEPE, UFPE, CNPq, and CAPES. This work was undertaken under the auspices of the project: Strengthen International Research Collaborations on the Development of Functional Surfaces, involving the European Union, Brazil, and Mexico (Grant Agreement 295254), supported by the European Commission under the FP7-People Program Marie Curie International Research Staff Exchange Scheme (IRSES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. A. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apolinario, L.H.R., Wallerstein, D., Montealegre, M.A. et al. Predominant Solidification Modes of 316 Austenitic Stainless Steel Coatings Deposited by Laser Cladding on 304 Stainless Steel Substrates. Metall Mater Trans A 50, 3617–3628 (2019). https://doi.org/10.1007/s11661-019-05293-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05293-y

Navigation