Skip to main content
Log in

Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior

  • Additive Manufacturing: Validation and Control
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A combined computational–experimental study is performed to investigate the effect of melting modes (conduction, transition and keyhole) on 316L stainless steel parts fabricated by selective laser melting. A high-fidelity mesoscale model is developed using the LIGGGHTS and OpenFOAM open-source codes to describe the physical phenomena (convection, melting, evaporation and solidification), melt flow dynamics and melting mode transition. The developed model helps to understand laser/matter interaction, melting of particles, the effect of recoil pressure and the formation of fusion zone. The computational results were found consistent with the single-track experimental results. Furthermore, for establishing the influence of melting mode on microstructural and mechanical properties, bulk samples with different melting modes were fabricated and characterized by comparing the microstructure, microhardness, nanohardness and tensile behavior. The experimental results showed that the stable keyhole mode results in higher hardness, higher elongation and finer cellular grains compared with the conduction mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  2. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).

    Article  Google Scholar 

  3. Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Int. J. Heat Mass Transf. 66, 879 (2013).

    Article  Google Scholar 

  4. R. Fabbro, J. Phys. D 43, 445501 (2010).

    Article  Google Scholar 

  5. M. Courtois, M. Carin, P.L. Masson, S. Gaied, and M. Balabane, J. Phys. D 46, 505305 (2013).

    Article  Google Scholar 

  6. D.B. Hann, J. Iammi, and J. Folkes, J. Phys. D 44, 445401 (2011).

    Article  Google Scholar 

  7. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, Progr. Addit. Manuf. 2, 157 (2017).

    Article  Google Scholar 

  8. U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, and J.M. Schoenung, Mater. Des. 113, 331 (2017).

    Article  Google Scholar 

  9. J.L. Tan, C. Tang, and C.H. Wong, Metall. Mater. Trans. A 49, 3663 (2018).

    Article  Google Scholar 

  10. T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, Mater. Des. 135, 257 (2017).

    Article  Google Scholar 

  11. G.E. Bean, D.B. Witkin, T.D. Mclouth, D.N. Patel, and R.J. Zaldivar, Addit. Manuf. 22, 207 (2018).

    Article  Google Scholar 

  12. T.D. Mclouth, G.E. Bean, D.B. Witkin, S.D. Sitzman, P.M. Adams, D.N. Patel, W. Park, J.-M. Yang, and R.J. Zaldivar, Mater. Des. 149, 205 (2018).

    Article  Google Scholar 

  13. J. Ciurana, L. Hernandez, and J. Delgado, Int. J. Adv. Manuf. Technol. 68, 1103 (2013).

    Article  Google Scholar 

  14. K.-H. Leitz, C. Grohs, P. Singer, B. Tabernig, A. Plankensteiner, H. Kestler, and L. Sigl, Int. J. Refract. Metals Hard Mater. 72, 1 (2018).

    Article  Google Scholar 

  15. C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, Prog. Comput. Fluid Dyn. 12, 140 (2012).

    Article  MathSciNet  Google Scholar 

  16. E.J. Parteli and T. Pöschel, Powder Technol. 288, 96 (2016).

    Article  Google Scholar 

  17. C. Tang, J. Tan, and C. Wong, Int. J. Heat Mass Transf. 126, 957 (2018).

    Article  Google Scholar 

  18. H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).

    Article  Google Scholar 

  19. N. Samkhaniani and M.R. Ansari, Heat Mass Transf. 53, 2885 (2017).

    Article  Google Scholar 

  20. A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. B-Fund. 13, 297 (1988).

    Article  Google Scholar 

  21. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).

    Article  Google Scholar 

  22. N. Pathak, A. Kumar, A. Yadav, and P. Dutta, Appl. Therm. Eng. 29, 3669 (2009).

    Article  Google Scholar 

  23. T. Mukherjee, H. Wei, A. De, and T. Debroy, Comput. Mater. Sci. 150, 369 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, A., Patel, S. & Kumar, A. Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior. JOM 71, 1105–1116 (2019). https://doi.org/10.1007/s11837-018-3271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3271-8

Navigation